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Abstract

The rise of generative artificial intelligence (AI) has fueled the conern that AI will ultimately
replace human jobs. This paper introduces a data corruption channel, arguing that the grow-
ing use of AI could eventually reduce its own productivity, due to a surge in AI-generated
data being used in training datasets. This diminished productivity implies that AI’s impact on
displacing human labor may not be as significant in the long run. Through a model of social
learning with both human and AI production, it is shown that the quantitative relevance of this
channel depends on the relative quality of data generated by AI versus human activities. Cali-
brating the model based on recent experimental findings from the AI literature, it is found that
the data corruption channel could mitigate AI’s initial labor displacement effect by 30% over
the long run. Taxes on AI adoption need to be implemented as private agents fail to internalize
the impact of their AI adoption on aggregate data quality.
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1 Introduction

The era of artificial intelligence (AI) has dawned upon us. What was once relegated to the realm of

science fiction has now permeated our everyday existence, making its presence felt across numer-

ous sectors and industries. With AI’s development advancing at an unparalleled rate, it brings

forth a unique set of challenges, among which the effects on the labor market stand out as a

pressing issue. Several recent works have focused on exploring the displacement effects of AI

on labor, particularly in terms of suppressing labor demand and intensifying income inequality

(Acemoglu and Restrepo, 2018, 2019; etc). The advent of sophisticated large language models,

such as ChatGPT, amplifies worries about AI displacing human labor in the foreseeable future.

Recent empirical studies, including those by Yilmaz et al. (2023) and Hui et al. (2023), shed light

on AI’s immediate detrimental effects on the labor market, manifesting through reduced wages

and decreased employment opportunities over the short run.

This paper examines the long run impacts of AI on the labor market. To this end, it moves

beyond pure empirical analyses to integrate economic theories with cutting-edge insights from AI

computer science research. The novel perspective this paper brings to the debate regarding the

tension between AI and labor is the notion of "data corruption", which posits that the widespread

adoption of AI may degrade the quality of data used to train subsequent AI generations, thereby

adversely affecting the quality of AI over time.

The idea of data corruption is illustrated in figure 1. Generative AI models, like ChatGPT, rely

on vast datasets for effective training (indicated by the black arrow). But where do these data

come from? Before the inception of the age of AI, these datasets were primarily composed of data

generated through human activities (blue arrow). These "real data" are then fed into AI models

for training. Now, with the increased popularity of generative AI models, those training datasets

are corrupted with "synthetic data" which are generated not through authentic human activities,

but through AI models. For instance, AI-powered tools like Midjourney and DallE2 allow users to

produce digital artwork that, once shared online, may become part of the training data for future

AI models. This cycle of using synthetic data in training could significantly affect AI productivity

over the long run.

The issue of data corruption has recently attracted significant attention within the AI and com-

puter science community. Table 1 surveys recent articles in the computer science literature that

explore the negative implications of training AI models with iterations of synthetic data. A com-
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Figure 1: Data Corruption with Generative AI

mon theme in these studies is that relying on synthetic data for AI training can erode the AI’s

capacity to perform its designated tasks effectively. We leverage these insights and experimental

results to calibrate and inform some deep parameters in our economic model, to which we now

turn.

The primary goal of this paper is to introduce an economic framework that connects findings

from the AI domain to ongoing economic discussions about the competition between human la-

bor and AI technology. Previous theoretic frameworks, such as those in Acemoglu and Restrepo

(2018), do not suit our analysis as they do not account for the pivotal role of data quality in deter-

mining AI productivity.

To this end, I develop a model where production occurs through either human labor or AI

technology. A novel aspect of this model is the assumption that AI productivity is directly influ-

enced by the quality of the data it is trained on. The concept of data in the model is consistent

with the social learning literature, that data emerges from economic activities (Veldkamp 2005;

Ordonez 2013; Fajgelbaum et al. 2017). Both AI and human labor can generate new information

and also act upon it, creating a feedback loop where the data generated by their activities informs

the training of future generations of AI. The key advantage of AI relative to human labor is that AI

has access to all historical data from economic activities, regardless of whether it was produced by

humans or previous versions of AI. The relative composition between economic activities carried
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Table 1: Recent AI Papers on Data Corruption

Title Authors Date

The Curse of Recursion:
Training on Generated Data Makes Models Forget Shumailov et al. (Oxford) May 2023

Towards Understanding the Interplay of Generative
Artificial Intelligence and the Internet Martínez et al. (Madrid) June 2023

Self Consuming Generative Model Go Mad Alemohammad et al. (Stanford) July 2023

Are Large Language Models a Threat to Digital Public Goods?
Evidence from Activity on Stack Overflow Rio-Chanona et al. (Harvard) July 2023

Will Large-scale Generative Models Corrupt Future Datasets? Hataya et al. (Kyoto) Aug 2023

Generative artificial intelligence enhances individual
creativity but reduces the collective diversity of novel content Doshi et al. (UCL) Aug 2023

The Curious Decline of Linguistic Diversity:
Training Language Models on Synthetic Text Guo et al. (École Polytechnique) Nov 2023

Large Language Models Suffer From Their Own Output:
An Analysis of the Self-Consuming Training Loop Briesch et al. (Johannes Gutenberg) Nov 2023

AI-Generated Images Introduce
Invisible Relevance Bias to Text-Image Retrieval Xu et al. (Chinese Academy of Sciences) Nov 2023

Nepotistically Trained Generative-AI Models Collapse Bohacek et al. (Stanford) Nov 2023

Under the Surface:
Tracking the Artifactuality of LLM-Generated Data Das et al. (U of Minnesota) Jan 2024

Note: Papers are listed in chronological order. For the sake of space, only the first academic affiliation is listed.
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out by AI versus humans thus could potentially impact the overall data quality.

To illustrate, consider a scenario in the healthcare sector where diagnosing a patient is the

task at hand. There’s inherent uncertainty about the best method for diagnosis, which is a key

variable. Decision-makers must estimate this variable to choose the most effective treatment path.

If a human professional, like a doctor, is tasked with the diagnosis, there are associated labor costs.

The human directly engages with the patient—observing symptoms and gathering data—which

then informs the diagnosis. This direct human interaction provides a unique, firsthand data signal

on the health condition. On the other hand, choosing AI for the task incurs technology deployment

costs. The AI’s prediction capabilities and thus its productivity hinge on the historical data it has

been trained with. Continuing with the healthcare example, an AI would utilize data records from

previous patients to diagnose the current one. It’s also posited that AI can generate its own data

signals about the condition, akin to creating simulated patient data through generative models, to

improve prediction accuracy for the task at hand. Note that all past data – diagnoses of previous

patients – could be coming from diagnoses from either human doctors or AI technologies.

I first establish an information equilibrium in which AI adoption and data quality are jointly

determined – the quality of data determines the attractiveness of AI technology relative to labor,

and the relative proportion of AI and labor determines the data quality. Through this frame-

work, the paper explores the model’s positive and normative implications: How does introducing

endogenous data quality change our understanding of the AI versus labor debate, particularly

regarding AI’s potential to replace jobs over the long run? And, with data quality playing a role

in AI adoption, what new considerations emerge for AI regulation?

The paper’s main finding is that the long-term impact of AI on job displacement may not be

as severe as previously thought. The data corruption channel plays a crucial role here in reverting

the labor displacement of AI. Consider a situation where AI becomes more affordable following

a significant reduction in expenses (possibly due to advancements in big data technology leading

to tools like ChatGPT). The immediate effect would likely be a rapid expansion in AI adoption,

leading to a decrease in labor demand. Nevertheless, because AI-driven activities generally pro-

duce information of lower quality compared to human activities, a surge in AI utilization could

gradually degrade the overall quality of data. This deterioration in data quality could, in turn,

diminish the effectiveness of AI, mitigating the initial rush towards AI adoption. Consequently,

the market share dynamics for AI might exhibit a bell-shaped curve, with an initial increase in the

short term followed by a decrease in the long term.
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I conduct numerical simulations to evaluate the quantitative relevance of this data corrup-

tion channel. I first show that a key statistic that determines the magnitude of this channel is the

relative quality of data produced by human labor activities and that generated by AI. If the infor-

mation quality from AI were on par with that from human labor, an increase in AI’s market share

would not result in much of a decline in overall data quality, thus avoiding a significant long-

term reversal in labor displacement trends. Conversely, if the quality of information from AI were

inferior to that produced by humans, the data corruption channel would emerge as significantly

impactful.

To identify the relative quality of data from AI versus human sources, I explore the latest

research from the forefront of AI and computer science literature. As shown in table 1, a growing

body of works investigate how training AI models with synthetic (AI-generated) data can degrade

these models’ productivity. Specifically, several studies (Chen et al. 2023; Alemohammad et al.

2023; Martínez et al. 2023) have assessed the decline in data quality by analyzing changes in the

Fréchet Inception Distance (FID) as synthetic data is incorporated into AI training processes. I

calculate the corresponding metrics within my model and calibrate the relative data quality of AI

v.s. human to replicate this key piece of evidence.

The resulting calibration suggests that AI provides much less information compared to human

labor: in the benchmark calibration data produced by AI is found to be only 8% as informative as

that from human labor. Given such a large disparity, the data corruption channel is quantitatively

important. When analyzing the dynamics of AI adoption following a one-time, permanent reduc-

tion in AI technology costs, the model predicts an immediate spike in AI adoption to 100%, which

later stabilizes to around 70% in the long term. Therefore, the data corruption channel can reverse

approximately 30% of the initial labor displacement over the long run.1

The data corruption channel also leads to an information externality, which calls for govern-

ment intervention: individual agents don’t consider their AI adoption decisions’ impact on equi-

librium aggregate data quality. Depending on the relative quality of AI and human-generated

data. Given that AI tends to generate less information comparing to human activities, this ex-

ternality is negative, indicating the need for a tax on AI. Unlike classic results in capital taxation

that capital tax should be zero over the long run, with the presence of this information externality

government intervention in AI technology remains necessary even in the long run.

1Consistent with the channel of the paper, Rio-Chanona et al. (2023) find that the introduction of large language
models like ChatGPT reduces human-generated content and posts on Stack Overflow.
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The paper relates to recent research on the impact of AI on labor, as explored by Acemoglu and

Restrepo (2018, 2019, 2022); Acemoglu et al. (2022); Moll et al. (2022) and Alonso et al. (2022). In

this context, the paper considers the endogeneity of AI productivity with respect to data quality.

It examines the implications of this relationship for labor displacement effects across various tasks

characterized by different levels of uncertainty. It is the first paper that introduces experimental

evidence from the computer science literature to discipline a model of AI.

Additionally, the paper connects to the existing body of literature that investigates the influ-

ence of data on the macroeconomy, as discussed in the works of Farboodi et al. (2019); Jones and

Tonetti (2020); Abis and Veldkamp (2021); Farboodi and Veldkamp (2022). The paper’s novelty

lies in proposing a model that jointly determines data quality and AI adoption. It further provides

insights into policy implications and the regulation of AI to manage the quality of data efficiently.

Moreover, the paper is linked to the literature on information economics and social learning, as

explored by Morris and Shin (2002); Veldkamp (2005); Amador and Weill (2010); Ordonez (2013)

and Fajgelbaum et al. (2017). Its key contribution is the application of a social learning framework

to analyze the issue of AI adoption. It builds on the insights in this literature that more economic

activities lead to more data being generated and hence in general better data quality. This paper

further argue that the composition of data from different sources, i.e. how much activities are

conducted by AI v.s. human, matters for aggregate data quality.

2 Model

2.1 Primitives and Technology

Time is assumed to be infinite, spanning from −∞ to +∞. In each period, there exist N̄ en-

trepreneurs. Each entrepreneur has a lifespan of 1 period and is replaced by a newborn en-

trepreneur at the start of the next period. These entrepreneurs have the ability to produce a good of

quality Ai
t, which they can sell to a representative household at a price of pAi

t. The representative

household is assumed with a utility function that is linear in the quality Ai
t, and for convenience,

we normalize the slope of this linear relationship to 1. Therefore, we have p = 1.2

The quality of the production is endogenous, and is influenced by the entrepreneurs action ai
t.

2By assuming short-lived entrepreneurs, we bypass the need to address the issue of data hoarding, as highlighted
by Jones and Tonetti (2020), which demonstrates the substantial social costs resulting from the nonrivalrous nature of
data. By abstracting from this aspect, we can direct our attention towards the innovative mechanism presented in this
paper.
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Specifically, I adopt the following functional form as in Farboodi and Veldkamp (2022):3

Ai
t = Ā −

(
θt − ai

t

)2

Where Ā is the maximum quality that can be achieved by some optimal action θt. It is assumed

that θt evolves according to

θt = ρθt−1 + ηt (1)

where ηt is a noise with mean 0 and precision γη .

2.2 Timing, Information, and the Firm’s Problem

Each entrepreneur faces a choice between using labor, incurring an idiosyncratic labor cost of φi
t,

or employing AI technology, incurring a capital cost of Rt. Given the setting of incomplete infor-

mation, the primary objective for each entrepreneur is to predict the true value of θt, potentially

aided by AI technology.

At the start of period t, entrepreneurs are born with their individual labor cost φi
t, which is

drawn from a distribution F(φ) at the beginning of the period. The fundamental parameter θt is

also realized, accompanied by a public signal that is observed by all individuals:

St = θt + εS
t

Here, εS
t represents noise with a mean of 0 and precision γS. The parameter γS captures the level

of uncertainty associated with a particular task. For instance, tasks like go-playing might have

low uncertainty, while more complex real-life tasks such as diagnosing patients can exhibit higher

task uncertainty.

The entrepreneur must then make a decision regarding whether to utilize their own labor or

adopt AI technology for the task. If they choose to employ their own labor, it generates a private

signal given by:

sli
t = θt + εli

t . (2)

The precision of this private signal is denoted as γl . Based on this signal, the entrepreneur can

produce the good using human labor at a cost of φi
t. The cost encompasses both the expenses

associated with information acquisition and the production cost with labor. In this case, the en-

3In a recent version of Farboodi and Veldkamp (2022), they explore a general setting under which the quality is
given by:

Ai
t = g

((
θt − ai

t

)2
)

,

where g is a strictly decreasing function. All of this paper’s result goes through with this generalization.
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trepreneur’s optimal action is determined by:

W l(St, sli
t ) = max

ai
t

E(Ai
t(ai

t)|St, sli
t ) (3)

The ex-ante payoff from labor production can be expressed as:

V l(St, φi
t) = E(W l(St, sli

t )|St)− φi
t

Here, the superscript l indicates that the entrepreneur is utilizing their own labor for produc-

tion.

Let’s now explore the considerations of entrepreneurs who choose to adopt AI in their produc-

tion processes. The adoption of AI incurs a cost, denoted as Rt, which entrepreneurs in period t

need to pay for the AI product. Rt is treated as an exogenous required rate of return, consistent

with the perspective of Acemoglu and Restrepo (2018) and others, who view AI technology as a

capital good. Once the entrepreneur purchases the AI product by paying Rt, the AI carries out an

action ai
t on behalf of the entrepreneur.

The AI has access to what is referred to as "big data," which encompasses an extensive dataset

containing all past public signals and past actions taken by entrepreneurs. Mathematically, this

can be represented as the following information set:

Ωt−1 = {St−j, Di
t−j}

i=1,2,3,...N̄
j=1,2,3,...,−∞

Here, St−j denotes past public signals, and Di
t−j represents data points regarding past actions taken

by previous entrepreneurs. The process of how this data is generated will be discussed later.

In addition to historical data, the AI is also capable of generating its own data, which can be

expressed as:

sAi
t = θt + εAi

t , εAi
t ∼ N(0, 1/γA)

The utilization of these two sources of information by the AI can be interpreted as follows. The

use of past information (Ωt−1) by AI to predict future outcomes is a common practice in many ap-

plications. For example, retail firms may utilize historical data to estimate future market demand,

and hospitals might employ data from past patient records to make diagnoses. Additionally, AI

can generate its own data, similar to generative models creating synthetic data to train the AI

model.

It is important to note that the emphasis on prediction versus new data generation may vary

across different industries. In certain domains like automated driving or Go-playing, where the

reward system is relatively straightforward and deterministic, or in research settings where AI can

explore novel drug combinations in high-dimensional spaces, the generation of new data could be
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highly valuable. Conversely, in a market context where AI is used to estimate demand, prediction

based on past data might play a more significant role. The model accommodates both dimensions.

Based on both sources of information, the AI then selects the action on behalf of the en-

trepreneur:

WA(St, sAit, Ωt − 1) = max
ai

t

E(Ai
t(ai

t)|St, sAit, Ωt−1)

The payoff from AI adoption is then given by:

VA(St) = E(WA(St, sAit, Ωt−1)|St)

Here, the superscript A indicates that the entrepreneur has adopted AI for production.

Given the value functions, the agent selects the option that results in the highest ex-ante value:

max{V l(St, φi
t), VA(St)}

Due to the monotonicity of V l(St, φi
t) with respect to φi

t, there exists a cutoff value denoted as φ̄

such that agents adopt AI only if their individual φi
t exceeds this cutoff. This determines the num-

ber of labor-adopting entrepreneurs, denoted by Nt. The number of AI-adopting entrepreneurs is

thus given by N̄ − Nt.

2.3 Data Generation

Let us now discuss the data generating process and how data points Di
t are related to economic

fundamental. When an entrepreneur takes an action, a data point is generated as a noisy signal

about that action:

Di
t = ai

t + εDi
t . (4)

Here, the noise εDi
t ∼ N(0, N̄/γD) can be interpreted as the information loss in the data collection

process. Following Fajgelbaum et al. (2017), we assume that the precision of these data points Di
t

are inversely proportional to N̄. This prevents the signals from being fully revealing as N̄ tends

to infinity. This assumption captures the notion that noise persists even with big data due to

the increasing complexity of large economies and the challenges of handling larger datasets with

constrained computational power.

In our model, we make the assumption that actions are observable, while private signals are

not directly observable. This assumption is commonly found in the social learning literature (see,

for example, Fajgelbaum et al. 2017), where companies consider their data as valuable assets and
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refrain from sharing it with other firms. For instance, Facebook’s private data is not directly vis-

ible to external parties, but its various business activities are, allowing outsiders to make partial

inferences about the information held by Facebook based on its actions.

Given this setup, the idiosyncratic data points in a given period can be summarized into two

aggregate statistics that reflect information generated by human labor and AI, respectively:

Xl
t =

1
Nt

∑
i≤Nt

(
ai

t + εDi
t

)
(5)

XA
t =

1
N̄ − Nt

∑
i>Nt

(
ai

t + εDi
t

)
(6)

Here, Nt represents the number of entrepreneurs adopting labor, and hence N̄ − Nt is the

number of entrepreneurs adopting AI. Thus, the overall information set available for AI at time t

is:

Ωt−1 = {St−j, Xl
t−j, XA

t−j}j=1,2,3,...,−∞ (7)

2.4 Equilibrium

Definition 2.1 An information equilibrium, given sequences of exogenous shocks and parameters, con-

sists of a sequence of individual decision rules
{
1

i
At, ai

t
}i=1,2,...N̄

t=−∞,...,+∞ , a sequence of aggregate labor-adopting

entrepreneurs {Nt}t=−∞,...,+∞, a sequence of data points
{

Xl
t, XA

t
}

t=−∞,...,+∞ and a sequence of beliefs

{Ωt}t=−∞,...,+∞ such that

1.
{
1

i
At, ai

t
}i=1,2,...N̄

t=−∞,...,+∞ solves individual entrepreneur’s problem given the sequence of beliefs.

2. {Nt}t=−∞,...,+∞ is given by Nt = ∑N̄
i=1 1

i
At, ∀t.

3.
{

Xl
t, XA

t
}

t=−∞,...,+∞ are given by:

Xl
t =

1
Nt

∑
i≤Nt

(
ai

t + εDi
t

)
XA

t =
1

N̄ − Nt
∑

i>Nt

(
ai

t + εDi
t

)
4. Beliefs evolve according to:

Ωt = {St−j, Xl
t−j, XA

t−j}j=0,1,2,3,...,−∞, ∀t
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3 Characterization

Our focus will now be on the limiting case as the number of entrepreneurs in the economy, N̄,

tends to infinity. In this scenario, the number of labor-adopting agents versus AI-adopting agents

becomes deterministic. Therefore, we can analyze the share of labor-adopting entrepreneurs:

nt =
Nt

N̄
→ F(φ̄t)

Here, φ̄t represents the threshold labor cost above which an entrepreneur would choose to adopt

AI. The share of labor-adopting entrepreneurs converges to the function F(φ̄t).

nt =
Nt

N̄
→ F(φ̄t)

3.1 A Recursive Structure in Data Quality

To characterize the information equilibrium, we begin by identifying a recursive structure in the

evolution of aggregate data accumulation. Following Farboodi and Veldkamp (2022), we intro-

duce the concept of "stock of knowledge":

γt =
1

Var (θt|Ωt−1)

which is the precision of belief given all past information Ωt−1. It is worth noting that due to the

linear quadratic form of the agents’ objective functions, the only state variable that needs to be

tracked is the precision, rather than the mean.

We now derive a law of motion for γt. To do so, note that the information sets defined in

equation 7 admit the following recursion:

Ωt = Ωt−1 ∪ {St, Xl
t, XA

t }. (8)

Thus to derive the law of motion for conditional beliefs we just need to see how beliefs evolve

through St, Xl
t, and XA

t . We turn now to this task.

3.2 Human-Generated Data

We first characterize the information generated by human labor Xl
t (equation 5). Solving the opti-

mal action rule for those who produce with labor (equation 3), we have:

ai
t = E(θt|St, sli

t ) =
γS

γS + γl
St +

γl

γS + γl
sli

t
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This action generates a data point:

Di
t = ai

t + εDi
t =

γS

γS + γl
St +

γl

γS + γl
sli

t + εDi
t

Since St is publically known, observing Di
t is equivalent to observing the idiosyncratic part

γl
γS+γl

sli
t + εDi

t , which is equivalent to the following signal of the fundamental θt:4

θt +

(
εli

t +
γS + γl

γl
εDi

t

)
.

Hence we obtain an expression for the summary statistic of human data (equation 5):

Xl
t =

1
Nt

Nt

∑
i=1

(
θt + εli

t +
γS + γl

γl
εDi

t

)

∼ N

(
θt,

1
Nt

(
1
γl

+

(
γS + γl

γl

)2 N̄
γD

))
where we plug in the precision of εli

t and εDi
t .

Note that as the number of entrepreneurs N̄ → ∞, this signal becomes:

Xl
t ∼ N

(
θt,

1
nt

(
γS + γl

γl

)2 1
γD

)
where nt is the share of labor-adopting firms. Thus we obtain the following:

Lemma 3.1 The information contents in human production activities can be summarized in Xl
t which is

an unbiased signal of the fundamental θt with precision nt

(
γl

γS+γl

)2
γD.

The precision of the signal is influenced by the share nt because when more agents adopt labor,

it leads to more information content being generated by labor. The term
(

γl
γS+γl

)2
captures the

idea that agents’ actions give weight to the public signal, and part of the variation in actions does

not contribute additional information beyond what is already observed in the public information.

Importantly, this term is less than 1, indicating that the actions of agents do not fully enhance the

information content of the public signal.

3.3 Information Content in AI activities

If the agent chooses to adopt AI tech, his optimal action is:

ai
t = E(θt|Ωt−1, St, sAi

t ) =
γS

γS + γA + γt
St +

γt

γS + γA + γt
µt +

γA

γS + γA + γt
sAi

t

where γt is given by equation 3.1 and µt = E (θt|Ωt−1) is the conditional mean of θt given past

information.
4To obtain this, multiply the idiosyncratic part γl

γS+γl
sli

t + εDi
t by γS+γl

γl
, and we obtain sli

t + γS+γl
γl

εDi
t . The signal

expression can be obtain by noticing that sli
t = θt + εli

t (equation 2).
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As in the case with labor production, this action generates a data point:

Di
t = ai

t + εDi
t =

γS

γS + γA + γt
St +

γt

γS + γA + γt
µt +

γA

γS + γA + γt
sAi

t + εDi
t

where both St and µt are prior knowledge. Hence the only valuable part of this data point is the

idiosyncratic component γA
γS+γA+γt

sAi
t + εDi

t , which can be arranged into the following signal about

fundamental θt :

θt +

(
εli

t +
γS + γA + γt

γA
εDi

t

)
.

Hence we obtain an expression for the summary statistic of AI-generated data (defined in equation

6):

XA
t =

1
N̄ − Nt

∑
i>Nt

(
θt + εAi

t +
γS + γA + γt

γA
εDi

t

)

→ N(θt,
1

1 − nt

(
γS + γA + γt

γA

)2 1
γD

)

where the limit in the last equation is taken with respect to N̄ → ∞. 1 − nt is the share of

AI-adopting firms.

Lemma 3.2 The information contents in AI production activities can be summarized in XA
t which is a

signal of θt with precision (1 − nt)
(

γA
γS+γA+γt

)2
γD.

The precision of the signal depends on the share 1 − nt because more AI-related activities

generates more information content for the AI signal. The middle term
(

γA
γS+γA+γt

)2
captures

the fact that agents’ actions place certain weight on the public signal and prior history, and that

part of the variation in actions does not contribute additional information beyond what is already

incorporated into aggregate information. Hence, the valuable source of variation comes from the

private signal part, and the AI optimally assigns a weight of γA
γS+γA+γt

to it.

3.4 The Evolution of Information and the Data Corruption Channel

We now derive the law of motion of the stock of knowledge γt. Utilizing the recursion (equation

8), we have:

Var (θt|Ωt) = Var
(

θt|Ωt−1, St, Xl
t, XA

t

)
From lemma 3.1 and 3.2, this conditional variance is given by:

Var (θt|Ωt) =
1

γt︸︷︷︸
prec. of Ωt−1

+ γs︸︷︷︸
prec. of St

+ nt

(
γl

γS + γl

)2

γD︸ ︷︷ ︸
prec. of Xl

t

+ (1 − nt)

(
γA

γS + γA + γt

)2

γD︸ ︷︷ ︸
prec. of XA

t
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where the four components in the denominator captures the information content in Ωt−1, St, Xl
t

and XA
t respectively. Given this expression, we obtain the law of motion for γt:

Theorem 3.1 Given γt and nt, γt+1 is given by:
1

γt+1
= Var (θt+1|Ωt)

= ρ2 1

γt + γs + nt

(
γl

γS+γl

)2
γD + (1 − nt)

(
γA

γS+γA+γt

)2
γD

+
1

γη
(9)

Note that this is a partial equilibrium result in the sense that the share of labor-adopting en-

trepreneurs nt is given. It is nonetheless useful for us to understand how nt could affect knowl-

edge accumulation. We now analyze what happens to aggregate information quality γt+1 when

we change the relative composition of AI and human (i.e. varying the value of nt):

Theorem 3.2 Holding fixed a γt, an increase in AI adoption (lower nt) leads to lower data quality in the

future (lower γt+1) if and only if the relatively quality of information in AI is sufficiently low compared to

those generated through labor:
γA

γl
<

γS + γt

γS
. (10)

proof: It can be observed from equation 9 that perturbations of nt affect γt+1 through the relative

magnitude of
(

γl
γS+γl

)2
γD and

(
γA

γS+γA+γt

)2
γD. If the former is greater than the latter, a decrease

in nt leads to a decrease in γt+1. Simplifying this condition yields equation 10.

This theorem is the key result of the paper: with greater AI adoption, the aggregate quality

of data can be hurt, because more AI-generated data corrupts the quality of the dataset. This

data corruption channel hinges on the key condition that the relative quality of AI versus human

generated data must be sufficiently low. We will quantify this aspect of the model in the section

4.1.

A perhaps unexpected implication can be drawn from the theorem: if the precision of signals

produced by both AI and humans is identical, i.e., γl = γA, then increased AI usage could detri-

ment future knowledge generation, as condition 10 is satisfied. Why could this occur, considering

they both provide equal-equality information?

This result can be understood as follows. In a context of social learning, the information ob-

tained by agents is not directly perceived but rather inferred from their actions. These actions are

noisy indicators of their private signals, as they also respond to additional data sources. For hu-

mans, their actions are influenced by the public signal St. For the AI, its actions are predominantly
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affected by historical data Ωt−1, apart from the public signal St. Therefore, given that it learns

from more information sources, AI efficiently assigns less weight to its own private signal than

humans do. As a result, less private data is incorporated into the collective knowledge pool in

comparison to human activities.

Another interesting implication of this theorem is that the lower the public uncertainty (higher

γS), the lower the value on the right hand side of equation 10, hence the more likely that AI can

increase the quality of aggregate data.5

From condition 10, one can easily see that the larger the existing body of knowledge (i.e.,

higher γt), the larger the value on the right-hand side of equation 10, suggesting that the adoption

of AI is more likely to hinder knowledge growth. This is based on the same reasoning that higher

γt values prompt AI to depend more on past data, assigning less weight to its own signal gener-

ation, which leads to less information being integrated into the collective knowledge. Note also

that in situations where prior knowledge is extremely precise, AI implementation yields the most

significant advantages. In such cases, we can expect a surge in AI adoption which could suppress

long-term knowledge growth.

The remaining task for characterizing the equilibrium is to endogenize nt. We now close the

model by determining the equilibrium nt via the individual optimality condition.

3.5 Closing the Model: Endogenizing nt

From the quadratic objective function, we know that optimal action is simply the conditional

expectation of the fundamental parameter θt. ai
t = E(θt|information set), where agents use all the

available information to forecast the fundamental, and take actions accordingly. Specifically, we

now derive the ex-post payoff of the entrepreneur who adopts labor to produce (equation 3):

W l
(

St, sli
t

)
= Ā − max

ai
t

E
((

θt − ai
t

)2
|St, sli

t

)
Take first order condition with respect to ai

t, we obtain:

ai
t = E

(
θt|St, sl,i

t

)
5The game of Go serves as a good example. The reward system in Go is relatively deterministic, with no uncer-

tainty. According to the prediction of this theorem, employing AI would significantly enhance knowledge creation,
which aligns perfectly with the observation of the AlphaGo system defeating world champion Ke Jie and continuing to
improve its gameplay, becoming a subject of study for Go players globally.
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Plug it back into W l (St, sli
t
)

which becomes:

W l
(

St, sli
t

)
= Ā − Var

(
θt|St, sli

t

)
= Ā − 1

γS + γl

where the last equality follows because the precision of the public signal and private signal are

given by γS and γl respectively, and that these two signals are uncorrelated. Given that W l (St, sli
t
)

does not depend on the specific realization of St, but only the second moments, we can derive the

ex-ante payoff for labor adoption (equation 2.2):

V l
(

φi
t

)
= E

(
W l
(

St, sli
t

)
|St

)
− φi

t

= Ā − 1
γS + γl

− φi
t (11)

Similarly we can derive the payoff of adopting AI technology

VA (γt) = Ā − Var
(

θt|St, Ωt−1, sAi
t

)
= Ā − 1

γS + γA + γt
− Rt (12)

Hence the threshold that determines the share of entrepreneur using each technology is pinned

down by equalizing the payoffs in those two cases:

V l (φ̄t) = VA (γt)

Plugging in the expressions for the two payoff functions:

Ā − 1
γS + γl

− φ̄t = Ā − 1
γS + γA + γt

− Rt

This gives the following threshold as a function of current stock of knowledge:

φ̄t (γt) = Rt +
1

γS + γt + γA
− 1

γS + γl

This equation, together with the equation characterizing the dynamic evolution of information,

pins down the information equilibrium in this model:

Theorem 3.3 The dynamics of the model is fully characterized by the following system:

1
γt+1

= ρ2 1

γt + γs + nt (γt)
(

γl
γS+γl

)2
γD + (1 − nt (γt))

(
γA

γS+γA+γt

)2
γD

+
1

γη
(13)

where the share of labor-adopting entrepreneurs is given by:

nt (γt) = F (φ̄t (γt)) = F
(

Rt +
1

γS + γt + γA
− 1

γS + γl

)
.

Note that the knowledge stock parameter γt appears in three distinct locations within the

law of motion equation 13. Firstly, it embodies information passed down from previous periods.
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Figure 2: Law of Motion and Policy Functions

Secondly, it influences the equilibrium level of AI adoption represented by 1 − nt. Lastly, it also

impacts the information generated through AI-associated activities because it alters the relative

weight AI places on its privately-produced signal.

Figure 2 provides a visualization of the equilibrium functions.6 The left panel displays the law

of motion for γt, which exhibits a non-linear trend, starting with an increase and then a decrease.

The initial increase is due to more information from the past implying more information for the

future, demonstrating the standard information transmission effect. The decreasing part indicates

that an abundance of information spurs greater AI adoption (as illustrated in the right panel).

Increased AI adoption can, in turn, impede knowledge growth when γl and γA are equal.

When the precision of the AI-generated signal γA approaches infinity, the model simplifies

to one where the relative productivity of AI and labor remains constant, similar to Acemoglu

and Restrepo (2018). Under this circumstance, AI can predict θt flawlessly using only the pri-

vate signal, making AI’s productivity consistently equal to the upper limit Ā. For labor-adopting

entrepreneurs, their expected productivity equals Ā − 1
γS+γl

. Hence, the relative (expected) pro-

ductivity of labor versus AI,

Ā − 1
γS+γl

Ā
is a constant and independent of γt.7

6Parameters used: ρ = 0.95, γS = 0.05, γD = 0.1, γl = 0.1, γA = 0.1, γη = 0.5, Rt = 3.68, ∀t. The function F follows
a log normal distribution with a mean of -2 and a standard deviation of 2.

7In Acemoglu and Restrepo (2018, page 1495, assumption 1), relative productivity is assumed to be fixed within a
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More generally, this relative productivity is given by

Ā − 1
γS+γl

Ā − 1
γS+γA+γt

from which it is evident that a higher knowledge base (higher γt) results in AI being relatively

more productive than labor, leading to increased AI adoption.

An important consideration is that even though AI can be more productive, it may contribute

less information to aggregate knowledge accumulation than humans. This is because AI can draw

upon rich historical data, potentially increasing its productivity. However, learning from the past

and taking corresponding actions do not necessarily contribute additional information to the col-

lective knowledge pool. In fact, the more accurate the historical data, the less AI relies on its

privately-generated signal, which can make its actions even less informative compared to those of

humans.

4 Quantification of the Data Corruption Channel

We now quantify the model. The key aspect of the calibration is to discipline the relative quality

of information generated by AI v.s. human: γA
γl

, as shown in equation 10. We will now discuss the

evidence to inform this aspect of the model.

4.1 FID Score and Full Synthetic Loop

We consult the computer science literature for how to measure the quality of information pro-

duced by AI. A crucial metric in this assessment is the Fréchet Inception Distance (FID), a popular

measure that gauges the similarity between outputs from a generative model and the data used

to train it. Mathematically the FID score calculates the distance between two probability distri-

butions. In practise, it effectively compares the empirical distribution of real data (e.g. images)

with the synthetic distribution produced by AI. A lower FID score indicates a closer resemblance

between these two distributions, and higher quality of AI.

We first calculate the FID score between the true value of fundamental θt and its conditional

distribution given the information available to AI, Ωt−1. Given that both distributions are nor-

mally distributed, we apply a specific formula for the FID score adapted to (single dimensional)

normal distributions (Dowson and Landau, 1982), where the distance between two normal distri-

task.
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Figure 3: Full Synthetic Loops

butions with means µx, µy and standard deviations σx, σy is calculated as:

(µx − µy)
2 + (σx − σy)

2

We determine the average FID score in the model by averaging across a large panel of simula-

tions. The reason for running the simulation is that the mean of the probability distributions

could change due to exogenous shocks. By averaging across a large panel of simulations we can

wash out the noises and obtain a robust measure of AI performance.

As discussed in the introduction, the emerging computer science literature on data corruption

consistently finds that increasing reliance on synthetic data generated by AI can degrade data

quality. In this literature the general methodology involves training generative AI software with

real-world data and then using the synthetic data it produces to train subsequent AI generations,

creating "full synthetic loops." This process, illustrated in figure 3, repeats over several iterations,

with each AI generation being trained exclusively on synthetic data produced by the preceding

generation (Alemohammad et al., 2023).

The key finding from those studies is that the FID score tends to increase with each iteration

of full synthetic loops, suggesting a decline in AI-generated data quality. For instance, Alemo-

hammad et al. (2023, see their figure 8) observed over 400% increase in FID scores during full

synthetic loops. Martinez et al. (2023, see their figure 3(c)) notes a rise of over 700%, and Bohacek

and Farid (2023, figure 2) find an approximately 300% increase throughout full synthetic loops in

a most recent study.

I argue that this pattern of increasing FID scores across synthetic loops can help identify a key

parameter in our information model: the relative quality of information produced by AI compared
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to humans. Figure 4 demonstrates this by showing the relationship between the quality of AI-

generated information and the FID score’s trajectory, with a steeper increase in FID score implying

faster detorioration of data quality. One can easily see that the lower the quality of information

provided by AI, the more the FID score increases during full synthetic loops. Thus, faster growth

of the FID score indicates lower quality of information provided by AI. In the calibration I thus

match the most conservative estimate of the FID score increase provided by Bohacek and Farid

(2023), which is 300%. This provides an upper bound for the relative information quality and

even in this case the calibration indicates that the relative quality of information provided by AI

is only 8% of that by human.

Our calibration results imply that AI contributes minimally to the generation of new infor-

mation or knowledge beyond what is already encapsulated within the aggregate dataset. This

finding aligns with the perspective that AI fundamentally operates as a machine learning tool,

which extrapolates predictions and insights based on pre-existing data and historical information.

Consequently, while AI may surpass human capabilities in terms of productivity, this advantage

does not translate into significant enhancements in the overall quality of the aggregated data. This

suggests that the value added by AI in the context of generating novel insights or improving the

informational quality of the dataset is limited. It underscores the notion that AI’s primary function

remains within optimizing and analyzing existing information rather than contributing original

knowledge or fundamentally novel insights to the dataset.

4.2 Calibration of other Parameters

I now describe how the remaining parameters are calibrated, beginning with the calibration of the

fundamental process as defined in equation 1. The calibration is based on the autocorrelation and

standard deviation of the logarithm of output, resulting in standard parameter values: ρ = 0.99

and γη = 1/(0.055)2.8 We set the standard deviation of investment cost to 0.0155, following

Fajgelbaum et al. (2017). The mean of the cost distribution is not separately identified from the AI

adoption cost R, and is therefore normalized to 0.

Next, we address the calibration of information parameters: γA, γl , γD, and γS. According

to equation 10, it’s important to note that the absolute values of γA and γL are not as critical as

their ratio, which determines the quantitative strength of the data corruption channel. Hence, we

8This implies that the standard deviation of the innovation ηt is 0.055, consistent with those used in existing litera-
ture.
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Figure 4: FID score in the model for full synthetic loops

normalize the precision of the labor signal to γl = 100, making the precision of the AI signal γA

a direct indicator of relative information quality. As discussed in section 4.1 and based on the

experimental findings by Bohacek and Farid (2023) showing that the FID score increases by 300%

over a full synthetic loop, we set γA = 8.

For γD, which measures the information loss during the data collection process (indicating that

data in our model merely serves as a noisy mirror of past economic activities as seen in equation

4), we calibrate it to match the initial data quality observed in the full synthetic loop 3. The initial

quality of the dataset, trained by humans and assessed using the FID score, is established at 90 by

Bohacek and Farid (2023). Aiming to match this values leads us to set γD=35.

Lastly, we assign γS = 0 due to the absence of additional targets for measuring the precision

of public signals. However, in section 4.5, we conduct a sensitivity analysis to evaluate the impact

of a higher γS value on our findings, to better understand how variations in this parameter could

potentially influence the outcomes of our model. We find that our results doe not change with a

changing precision of public signal, as long as the model is recalibrated to match the evolution of

FID score during full synthetic loops as shown in section 4.1.
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Figure 5: Model Dynamics – the ChatGPT Experiment

4.3 Quantitative Results: the ChatGPT Experiment

We will now describe the experiment designed to evaluate the long-run effects of AI adoption,

termed the "ChatGPT" experiment. This experiment begins in a hypothetical world at time t =

1, where AI technology is either nonexistent or the costs associated with its adoption are pro-

hibitively high (e.g. R0 → ∞). We then examine the model dynamics following a negative shock

in period t = 2, which reduces the cost of AI to R1. The cost stays constant after this period. This

scenario could be interpreted as a significant technological breakthrough, such as the introduction

of ChatGPT, which substantially lowers the barriers to AI accessibility and affordability.

Figure 5 displays the model dynamics. The top left panel plots the one-time permanent reduc-

tion in the cost of AI. Following this exogenous cost reduction, we analyze the model dynamics

according to equation 13. The top right panel shows a rapid increase in the proportion of firms

adopting AI, nearly reaching 100% before settling back to approximately 75%. This initial surge

and subsequent decline highlight the impact of the data corruption channel: the reduced costs
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encourage widespread AI adoption, which in turn hurts the aggregate data quality, mitigating the

advantages of adopting AI technology. The bottom left panel tracks the decline in aggregate data

quality over time (γt), a direct consequence of increased reliance on AI, which, as illustrated in

the bottom right panel, leads to a reduction in AI’s relative productivity and, consequently, its

attractiveness.9 This experiment suggests that the labor displacement effects observed with the

introduction of AI may partially reverse over time. This reversion effect could be significant, as

demonstrated in this numerical example.

Figure 6 compares equilibrium functions under varying AI costs. The information law of mo-

tion when AI costs are high (represented by the yellow line) is located above that when the costs

are low (indicated by the red line). Hence, if we begin with a steady state characterized by high

costs of AI, following exogenous shocks that reduces the AI costs, the equilibrium information

quality would gradually diminish over time and converge to the low steady state associated with

lower costs of AI.
9The relative productivity of AI is calculated as the percentage differences in expected ex-post payoffs between AI

adoption and labor adoption. Specifically it is equal to:

VA(Rt)− E(Vl(ϕi))

E(Vl(ϕi)

where VA(Rt) and Vl(ϕi) are ex-post payoffs and are given by equation 12 and 11. The expectation is taken over
idiosyncratic labor costs ϕi.
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4.4 Equal Information Quality: A Counterfactual

To understand the importance of the data corruption channel,we conduct a counterfactual exper-

iment where AI and human activities generate information of identical quality, setting γA = γl

to 100 for both, while other parameters remain as they were in the baseline calibration. Results

are displayed in figure 7, comparing the baseline (blue solid line) against the scenario of equal

information quality (red dashed line).

The top left panel shows that, in this counterfactual, the cost reduction needed to achieve 100%

AI adoption in the short term is almost the same as in the baseline. However, the adoption dynam-

ics differ markedly; with equal information quality, there is no significant reversal in AI adoption

rates, which remain close to 100% in the long run, in stark contrast to the 30% reversal observed in

the baseline. This difference arises because data quality does not deteriorate as significantly when

AI generates information of comparable quality to humans. Interestingly, even with equal infor-

mation quality, we observe a gradual decline in data quality over time, attributed to AI’s lesser

reliance on private information compared to humans, and hence AI’ action reveals less private

information and contribute less to aggregate data quality compared to humans. Equal informa-

tion quality implies a reduced data corruption effect, leading to a slower decline in AI’s relative

productivity and sustaining its appeal as an efficient choice for firms in the long term.

This counterfactual experiment concludes that the data corruption channel has a significant

long-term impact on the labor market by diminishing AI’s productivity. In our baseline scenario,

this channel is responsible for reversing 30% of AI’s short-term labor displacement effect. This

reversal is entirely absent when information quality is equalized between humans and AI.

4.5 The Role of Public Signal

In our baseline calibration, we set the precision of the public signal, γS, to zero, which naturally

raises the question of how the model’s dynamics might be affected by lower aggregate uncertainty,

indicated by a higher value of γS. This section explores changes in the model’s behavior with a

more precise public signal.

To start, I set the precision of the public signal γS to 1. With this change, other parameters need

to be recalibrated, particularly the relative quality of information generated by AI versus human.

Figure 8 illustrates why a recalibration is necessary by comparing two circumstances. The red line

represents the case where the relative information quality remains at the benchmark level of 8%.
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Figure 7: The ChatGPT Experiment with Equal Information Quality
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Figure 8: FID score with public signal γS = 1

However, with a more accurate public signal, this 8% difference is insufficient to achieve a 300%

increase in the FID score. The lower uncertainty environment means that the contributions of

human and AI to data quality are closer, as both are following the precise public signal, diminish-

ing the data corruption effect and lessening the deterioration in data quality during full synthetic

loops.

To replicate the observed 300% increase in the FID score, we find that the gap in private infor-

mation between AI and humans must be widened. A recalibration indicates that this gap corre-

sponds to AI’s relative information quality being at 1% (as shown by the blue line in Figure 8). All

other parameters remain the same as the benchmark calibration.

Figure 9 presents the numerical results when we conduct the ChatGPT experiment under this

scenario of low uncertainty. The blue line is the benchmark result for comparison purposes. The

red dashed line is the case with low uncertainty. Following the shock that reduces AI adoption

costs, the immediate spike in the share of AI-adopting firms mirrors the original experiment,

almost reaching 100%. Intriguingly, the reversal effect observed is quite similar to that of the

benchmark scenario (as depicted in the top right panel of Figure 9), with the equilibrium share of

AI-adopting firms stabilizing around 75%. This suggests that even under conditions of low uncer-

tainty, the data corruption channel remains significant enough to counteract 30% of the short-term
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Figure 9: Model Dynamics with Low Uncertainty

labor displacement effect.

We conclude that varying the precision of the public signal does not fundamentally change

the impact of the data corruption channel. More critically, it underscores that when the model

is calibrated to replicate the increase in FID score observed during synthetic loops as in the AI

literature, the quantitative magnitude of the data corruption channel is effectively pinned down,

rendering it robust to changes in other model parameters.

4.6 Review of Evidence from Computer Science

This section examines evidence in support of the model’s key mechanism. The primary proposi-

tion of the model, which results in less labor displacement over the long run, is that increased AI

adoption tends to produce less useful data points, subsequently reducing productivity for future

AI. There is substantial evidence in computer science to support it. A recent paper reveals that

the effectiveness of ChatGPT has decreased over time (Chen et al. 2023). The authors evaluate

the performance of the March version of ChatGPT against its June version across a range of tasks

such as prime-finding and code generation. They conclude that in most of these tasks, ChatGPT’s

capability to generate correct responses has lessened.

28



What causes this decline? A major factor of concern is that since the introduction of ChatGPT,

and large language models (LLMs) in general, they have been broadly adopted to perform a vari-

ety of tasks including text and image generation, app development, and more, thereby generating

vast amounts of content posted on the internet. This AI-generated content is then utilized to train

successive generations of AI models, which might have unforeseen consequences (Martínez et al.

2023). This aligns precisely with the feedback mechanism proposed in the paper.

Concurrent with this paper, contemporary scientific research in computer science has expressed

similar worries, suggesting that the use of model-generated data to train an LLM could result in

potentially problematic outcomes, such as quality degradation, reinforced biases, and loss of nov-

elty. Alemohammad et al. (2023) examines generative image models trained on model-generated

data and finds that training these models on synthetic data, as opposed to human-generated data,

tends to progressively amplify artifacts (refer to their Figure 1). Consequently, "...models are des-

tined to see a progressive decline in their quality (precision) or diversity (recall)." Shumailov et al.

(2023) employs large language models like ChatGPT and shows that the use of model-generated

content leads to "irreversible defects in the resulting models." They show that this phenomenon

can occur in a variety of AI models, not limited to large language models. Research across various

contexts and employing different AI software consistently shows that training AI models with

synthetic content tends to degrade the quality of outputs, particularly affecting their diversity,

according to studies such as Guo et al. (2023) and Doshi and Hauser (2024). The extent of this

decline in data quality is influenced by the mix of real versus synthetic data in the training set, as

highlighted by Briesch et al. (2023).

Additionally, there is evidence of a displacement effect where generative AI crowds out the

production of human-generated content. Rio-Chanona et al. (2023) utilizes a difference-in-differences

approach to compare the United States with Russia and China, where access to ChatGPT is more

restricted. Their findings suggest that the launch of ChatGPT is associated with a 16% decrease in

weekly contributions to Stack Overflow, indicating a significant crowding-out effect of generative

AI on human contributions.

5 Efficiency

In this section, we investigate the efficiency of the information equilibrium, focusing particularly

on the efficiency of the AI adoption decision. We seek to answer questions such as: Is the private
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sector’s decision to adopt AI socially efficient? If given the choice, would a planner change the

mass of AI adoption?

To explore these questions, we establish a benevolent social planner’s problem. To focus on

the main tradeoff, we focus on the steady-state version of the planner’s problem. The planner

can choose which private agents adopt AI technology, but otherwise cannot affect the knowledge

accumulation procedure.

Vsp = max
γ,φ̄

∫ φ̄ [
V l(φ)

]
dφ +

∫
φ̄

[
VA(γ)

]
dφ

s.t.

1
γ
= ρ2 1

γ + γs + n
(

γl
γS+γl

)2
γD + (1 − n)

(
γA

γS+γA+γ

)2
γD

+
1

γη

n = F (φ̄)

The objective of the social planner is to maximize the ex-ante utility of the entrepreneurs (be-

fore the φ shock realizes). The planner can choose the threshold φ̄, which pins down the share of

labor vs. AI adopting entrepreneurs (n), which in turn determines the steady state information

quality γ from the first constraint. The two constraints jointly pin down γ (φ̄) as a function of φ̄.

Plug in γ (φ̄) and the value function for labor adoption V l(φ) and AI adoption VA(γ) (equa-

tion 11 and 12):

Vsp = max
φ̄

∫ φ̄
[

Ā − 1
γS + γl

− φ

]
dφ +

∫
φ̄

[
Ā − 1

γS + γA + γ (φ̄)
− R

]
dφ

One can see from this expression that the key difference between the social planner’s problem

and private agents’ problem is that the social planner understands that information quality is

affected by AI adoption (the expression γ (φ̄) in red) while private agents takes γ as fixed.

The following first order condition pins down the socially efficient threshold φ̄sp:
1

γS + γA + γ (φ̄sp)
+ R − 1

γS + γl
− φ̄sp︸ ︷︷ ︸

Private Benefits

+
(1 − n (φ̄sp))

(γS + γA + γ (φ̄sp))2 γ′ (φ̄sp)︸ ︷︷ ︸
Externality

= 0

The optimality condition consists of two parts: the "private benefits" and the "externality". The

"private benefits" term is identical to the private optimality condition. The "externality" term is

what the social planner considers but the private agent does not. Note that the externality term

depends on how information γ varies with the adoption threshold φ̄.

The following theorem shows the direction of this derivative and hence the optimal regulation

by government:
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Theorem 5.1 1. γ′ (φ̄sp) > 0 if and only if the adjusted quality of human data is greater than the AI

data:
γl

γA
>

γS

γS + γ (φ̄sp)
(14)

2. If the government were to levy a tax on AI adoption, the tax rate is positive if and only if γ′ (φ̄sp) > 0

Condition 14 takes a similar force to condition 10, where the nature of externality depends on

the relative quality of information generated by human and AI. When human activities can create

more information content compared to AI, the information externality of AI adoption is negative,

in the sense that more AI adoption reduces the aggregate information content. The negative exter-

nality thus calls for a taxation of AI, even over the long run. Note that, if AI generates more precise

data, but γl is not much less than γA, a tax should still be imposed on AI adoption. The reason

is that AI are less efficient at incorporating new information into aggregate knowledge, and a tax

on AI reflects this relative inefficiency. Thus, according to our benchmark calibration, a tax on AI

adoption should be implemented to achieve a socially efficient level of data quality.

A caveat of the theorem is that it focuses on the steady state, which means it primarily con-

siders optimal government regulation in the long run. Over the shorter term, the case for regu-

lation could be less compelling due to the dynamic nature of information externalities: today’s

AI adoption decisions impact tomorrow’s knowledge stock, thereby influencing the welfare of fu-

ture generations. Consequently, the extent and nature of regulation would depend on the time

frame the government considers, as well as the weight assigned to the welfare of each generation.

For instance, if the government’s concern is limited to the welfare of the current generation of

entrepreneurs, regulation may not be deemed necessary.

This theorem also suggests that the government should regulate different tasks with poten-

tially different levels of fundamental uncertainty and stock of knowledge differently. For example,

the task of Go-playing has minimal uncertainty, which weakens the case for taxation. However,

tasks that feature a lot of uncertainty, such as forecasting future market demand or developing

a new drug, the theorem suggests that greater uncertainty implies more regulation and taxation.

Therefore, government policy should be task-based, determined on a case-by-case basis.
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6 Extensions and Robustness

This section offers two extensions to the base model to examine its robustness. We first relax the

assumption that entrepreneurs, upon inception, cannot observe any prior history. Instead, we

posit that they are born with the ability to observe a certain fraction of past information. We also

relax the assumption that the signal generated by AI is unrelated to past history, positing instead

that the quality of the signal may improve with the quality of historical data observed. In this

expanded model, we outline the model equilibrium and discuss its implications.

In the baseline model, it’s assumed that entrepreneurs are incapable of observing past data

history, while AI can observe the entire history. This assumption is mainly for clarity and to

underscore the informational differences between humans and machines, emphasizing that ma-

chines (AI) are more efficient at collecting and processing extensive historical big data. In this

section, we relax this assumption and demonstrate that the primary findings of the paper remain

unchanged.

We propose that each entrepreneur, upon their inception, is able to observe a fraction of past

data, denoted by κ < 1. This can be interpreted as entrepreneurs being able to observe information

within their local communities and networks, which only constitute a fraction of the total amount

of information available in the entire economic system. For instance, an entrepreneur from Michi-

gan may be very familiar with business practices, culture, and customer preferences in Michigan,

but less familiar with those in Florida or New York. Conversely, AI can collect and process data

from all states in the US and even from the rest of the world.

Specifically, assume that the information set an entrepreneur born with (denoted by super-

script e) is given by:

Ωe
t−1 = {St−j, Di

t−j}
i=1,2,3,...κN̄
j=1,2,3,...,−∞

Note that the superscript for the number of noises now spans from 1 to κN̄ < N̄. As we will take

N̄ → ∞, there will be no integer problem associated with this notation.

This information set admits a similar recursion as shown in Y:

Ωe
t = Ωe

t−1 ∪ {St, Xle
t , XAe

t }

where

Xle
t =

1
κNt

∑
i≤κNt

(
ai

t + εDi
t

)
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XAe
t =

1
κ (N̄ − Nt)

κN̄

∑
i>κNt

(
ai

t + εDi
t

)
Denote the summary statistics for human and AI in the evolution of information for entrepreneurs.

Denote the prior information content to be γe
t =

1
Var(θt|Ωe

t−1)
.

We also relax the assumption that the precision of the signal generated by AI is independent

of the quality of the historical data the AI has been trained on. We refine this by postulating that

the precision of the AI-generated signal follows the following functional form:

γA (γt) = a + bγt (15)

where a and b ≥ 0 are some constants. When b = 0, we go back to our baseline assumption.

Now, let’s derive the model dynamics. We’ll begin by determining the optimal actions for

entrepreneurs choosing different modes of production.

If the agent chooses to use labor, his optimal action is:

ai
t = E(θt|Ωe

t−1, St, sli
t ) =

γS

γS + γl + γe
t
St +

γe
t

γS + γl + γe
t
µe

t +
γl

γS + γl + γe
t
sli

t

where γt is given by equation 3.1 and µe
t = E

(
θt|Ωe

t−1

)
is the conditional mean of θt given past

information, and the only informative part in this action is γl
γS+γl+γe

t
sAi

t . Thus, it can be shown that

the summary statistics for labor is (taking N̄ → ∞ ):

Xle
t ∼ N

(
θt,

1
κnt

(
γS + γl + γe

t
γl

)2 1
γD

)
We now derive the signal associated with AI activities. The optimal action of AI is given by:

ai
t = E(θt|Ωt−1, St, sAi

t ) =
γS

γS + γA (γt) + γt
St +

γt

γS + γA (γt) + γt
µt +

γA (γt)

γS + γA (γt) + γt
sAi

t

where γA (γt) is given by equation 15. Note that the only information content here is γA(γt)
γS+γA(γt)+γt

sAi
t .

Hence, the summary statistic for AI activity is (taking N̄ → ∞ ):

XAe
t → N(θt,

1
κ (1 − nt)

(
γS + γA (γt) + γt

γA (γt)

)2 1
γD

)

With these two summary signals, we can derive the law of motion for γt and γe
t in a joint

manner. Note that we need to keep track of both measures of information as they enter into the

law of motion for both variables. Specifically, γt+1 is given by the following function of γt and γe
t :

1
γt+1

= ρ2 1

γt + γs + nt

(
γl

γS+γl+γe
t

)2
γD + (1 − nt)

(
γA(γt)

γS+γA(γt)+γt

)2
γD

+
1

γη
(16)
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And γe
t+1 is given by the following function of γt and γe

t :

1
γe

t+1
= ρ2 1

γe
t + γs + κnt

(
γl

γS+γl+γe
t

)2
γD + κ (1 − nt)

(
γA(γt)

γS+γA(γt)+γt

)2
γD

+
1

γη
(17)

From the two law of motion, one can examine how changes in nt affects knowledge accumu-

lation by examining whether(
γl

γS + γl + γe
t

)2

−
(

γA (γt)

γS + γA (γt) + γt

)2

> 0

which boils down to:
γl

γA (γt)
>

γS + γe
t

γS + γt

when this condition is satisfied, reducing nt (or more AI adoption) reduces knowledge accumula-

tion for both AI and entrepreneurs.

The insights obtained from the baseline model remain. First, given that AI has access to more

data points than humans, γt > γe
t , and therefore,

γS + γe
t

γS + γt
< 1

Hence, even if human and AI generate signals of equal precision, we would still expect AI adop-

tion to hinder knowledge accumulation. However, now an offsetting force is introduced: γA is

increasing in γt. So when γt is very large, γA would also be large, which would make the inequal-

ity harder to satisfy. This is due to the fact that the signal generated by AI improves in quality in

relation to the overall data quality. However, this offsetting force is likely not strong enough to

overturn the main result of the paper, as we will see in the full model dynamics.

To close the model, we now derive the endogenous share of labor-adopting entrepreneurs. In

this case the value of adopting labor is:

V l = Ā − 1
γS + γl + γe

t
− φi

t

while the value of adopting AI is

VA = Ā − 1
γS + γA (γt) + γt

− Rt

Hence the threshold cost of labor is pinned down by

φ̄ (γt, γe
t ) = Rt +

1
γS + γA (γt) + γt

− 1
γS + γl + γe

t
(18)

Thus model dynamics is fully characterized by equation 16 and 17, where the share of labor-

adopting entrepreneurs is given by

nt (γt, γe
t ) = F (φ̄ (γt, γe

t ))
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Figure 10: Model Dynamics with Low Uncertainty

and φ̄ (γt, γe
t ) is given by equation 18.

In contrast to our benchmark model, this system is characterized by two state variables rep-

resenting the information possessed by entrepreneurs and AI, respectively. Figure 10 simulates

the economy and carries out the ChatGPT experiment similar to section 4. It is observed that the

labor displacement effect is also partially reversed in this case (top right panel). In this numerical

example, I set κ = 0.01, indicating that the information possessed by humans is only 1% of that by

AI. The difference in the overall level of information between γt and γe
t is much smaller, roughly

equal to 60 percent (0.27 vs. 0.16) because of the existence of a public signal.10

Upon a reduction in the cost of AI, the share of AI-adopting firms increases. This displacement

effect is partially reversed as in the baseline experiment. The logic for the reversal is basically

the same as in the baseline experiment: the data quality of AI γt decreases (bottom left panel),

reducing the efficacy and hence the productivity of AI products. However, there is an additional

force here: the relative attractiveness of AI also depends on the efficiency of using labor, which in

this case is endogenous to past information quality up to the coefficient κ. The bottom right panel

10Parameters used: ρ = 0.95, γS = 0.05, γD = 2, γl = 0.1, γA = 0.1 + 0.1 ∗ γt, γη = 0.5, κ = 0.01, Rt = 0.95, ∀t. The
function F follows a log normal distribution with a mean of -2 and a standard deviation of 2.

35



indicates that the change in labor data quality γe
t decreases to a much lesser extent, indicating that

there is virtually no change in the productivity of labor. This is because κ < 1, and therefore the

productivity of labor is less affected by the endogenous evolution of data quality.

7 Conclusion

Data is the lifeblood of AI. This paper proposes a data corruption channel and explores its im-

plications for the long-term effects of labor displacement by artificial intelligence (AI). It presents

a model where the adoption of AI and the quality of data are jointly determined within an in-

formation equilibrium. The central focus is a key statistic: the relative quality of data produced

by humans versus AI. When this statistic is calibrated with recent experimental findings from

computer science literature, it is found that information produced by AI is much inferior to those

produced by human, and hence, the data corruption channel is quantitatively important, and can

reverse 30% of the labor displacement effect in the long run. Nonetheless, AI should still be reg-

ulated, possibly through taxation, in the long run to achieve the socially efficient level of data

quality.

The model is presented in a purposefully simple manner to highlight the key force at work.

It can be extended in various ways to explore many interesting questions. For instance, while

this paper assumes short-lived entrepreneurs for simplicity, future research could explore social

learning in the context of long-lived firms. This would introduce additional complexities, such

as data privacy issues highlighted in works like Jones and Tonetti (2020). A future exciting area

of research would be to create a comprehensive quantitative model that considers various forces

shaping the co-evolution of data and AI, allowing for a more detailed and practical discussion of

government policies.
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Appendix

A Proof

Proof of theorem 5.1

Plug in the conditional value functions into the social planner’s problem:

Vsp = max
γ,φ̄

∫ φ̄
[

Ā − 1
γS + γl

− φ

]
dφ +

∫
φ̄

[
Ā − 1

γS + γA + γ
− R

]
dφ

We could arrange the constraint as γ (φ̄) , hence the value function becomes:

Vsp = max
φ̄

∫ φ̄
[

Ā − 1
γS + γl

− φ

]
dφ +

∫
φ̄

[
Ā − 1

γS + γA + γ (φ̄)
− R

]
dφ

Now consider perturbing φ̄. The first order condition becomes:[
Ā − 1

γS + γl
− φ̄

]
−
[

Ā − 1
γS + γA + γ (φ̄)

− R
]
+
∫

φ̄

[
γ′ (φ̄)

(γS + γA + γ (φ̄))2

]
dφ = 0

Thus the socially efficient threshold φ̄sp is pinned down by:
1

γS + γA + γ (φ̄sp)
+ R − 1

γS + γl
− φ̄sp︸ ︷︷ ︸

Private Benefit Term

+
(1 − n (φ̄sp))

(γS + γA + γ (φ̄sp))2 γ′ (φ̄sp)︸ ︷︷ ︸
Externality Term

= 0

Compared to the private equilibrium where the threshold is pinned down by equating the private

gains and benefits:

1
γS + γA + γ (φ̄)

+ R − 1
γS + γl

− φ̄ = 0

We have an extra term
∫

φ̄

[
γ′(φ̄)

(γS+γ(φ̄))2

]
dφ which captures the positive externality: the fact that

one’s economic behavior could generate data, improve the data quality and the quality of AI, and

therefore the overall welfare. Because of this extra term, the government needs to tax the AI in the

steady state. Let’s say that the government needs to impose a wedge (tax) τ on the return of AI,

and rebate all proceeds in a lump-sum fashion to all the households in a uniform way. Then the

private CE becomes:[
Ā − 1

γS + γl
− φ̄

]
−
[

Ā − 1
γS + γA + γ (φ̄)

− R
]
(1 − τ) = 0[

Ā − 1
γS + γl

− φ̄

]
−
[

Ā − 1
γS + γA + γ (φ̄)

− R
]
+ τ

[
Ā − 1

γS + γA + γ (φ̄)
− R

]
= 0

1
γS + γA + γ (φ̄)

+ R − 1
γS + γl

− φ̄ + τ

[
Ā − 1

γS + γA + γ (φ̄)
− R

]
= 0
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Hence we need the tax rate to be such that:

τ

[
Ā − 1

γS + γA + γ (φ̄)
− R

]
=
∫

φ̄

[
γ′ (φ̄)

(γS + γA + γ (φ̄))2

]
dφ

τ =
(1 − F (φ̄))

[
γ′(φ̄)

(γS+γA+γ(φ̄))2

]
Ā − 1

γS+γA+γ(φ̄)
− R

where we factor out γ′(φ̄)

(γS+γA+γ(φ̄))2 . But note that it depends on every term in this expression is

positive except γ′ (φ̄) . Let us determine the sign of it. Write the constraint of the social planner as:

H (γ, φ̄) =
1
γ
− ρ2 1

γ + γs + F (φ̄)
(

γl
γS+γl

)2
γD + (1 − F (φ̄))

(
γA

γS+γA+γ

)2
γD

− 1
γη

= 0

∂H
∂φ̄

= ρ2

[(
γl

γS+γl

)2
γD −

(
γA

γS+γA+γ

)2
γD

]
f (φ̄)(

γ + γs + F (φ̄)
(

γl
γS+γl

)2
γD + (1 − F (φ̄))

(
γA

γS+γA+γ

)2
γD

)2

∂H
∂γ

= − 1
γ2 − ρ2

−
(

1 − 2 (1 − F (φ̄)) γA

(γS+γA+γ)2 γD

)
(

γ + γs + F (φ̄)
(

γl
γS+γl

)2
γD + (1 − F (φ̄))

(
γA

γS+γA+γ

)2
γD

)2

Hence

γ′ (φ̄) = −
∂H
∂φ̄

∂H
∂γ

One can show that ∂H
∂γ < 0 :

∂H
∂γ

= − 1
γ2 − ρ2 −1(

γ + γs + F (φ̄)
(

γl
γS+γl

)2
γD + (1 − F (φ̄))

(
γA

γS+γA+γ

)2
γD

)2

−ρ2
2 (1 − F (φ̄)) γA

(γS+γA+γ)2 γA
D(

γ + γs + F (φ̄)
(

γl
γS+γl

)2
γD + (1 − F (φ̄))

(
γA

γS+γA+γ

)2
γD

)2

< −ρ2
2 (1 − F (φ̄)) γA

(γS+γA+γ)2 γD(
γ + γs + F (φ̄)

(
γl

γS+γl

)2
γD + (1 − F (φ̄))

(
γA

γS+γA+γ

)2
γD

)2 < 0

because
1

γ2 > ρ2 1(
γ + γs + F (φ̄)

(
γl

γS+γl

)2
γD + (1 − F (φ̄))

(
γA

γS+γA+γ

)2
γD

)2
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Hence the sign of γ′ (φ̄) depends on ∂H
∂φ̄ , which in turn depends on

(
γl

γS + γl

)2
γD −

(
γA

γS + γA + γ

)2
γD

Hence if
γl
γA

>
γS

γS + γ (φ̄)

we can show that (
γl

γS + γl

)2
γD −

(
γA

γS + γA + γ

)2
γD > 0

, then

γ′ (φ̄) > 0

which means that

τ > 0

On the other hand, if AI is more efficient in generating data than labor:

γl
γA

<
γS

γS + γ (φ̄)

Then one can show that

γ′ (φ̄) < 0

and hence

τ < 0
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