Public Disclosure and Private Information Acquisition: A Global-Game Approach

> Zhifeng Cai Rutgers University

Feng Dong Tsinghua University

Midwest Econ Theory April 29, 2022

Introduction

- Public information disclosure is a crucial component of financial-macro regulations
- There are concerns, however, that public information could crowd out private-sector information generation...
- to the extent that overall information quality is harmed (Morris and Shin, 2002; Amador and Weill, 2010; Goldstein and Yang 2019)
- Typically, such conclusions are drawn from models where information are substitutes
- ▶ What if, information acquisitions are strategic complements?

Introduction

- This paper studies the impact of public information disclosure in a model of financial market with strategic information acquisition
- ▶ The model is a dynamic version of Grossman and Stiglitz (1980) with short-term investors
- ▶ Short-termism and resale needs creates information complementarity
 - Everyone wants to know what others know \rightarrow A beauty contest game
- ► Challenge: multiple equilibria may arise due to the complementarity → difficulty in analyzing comparative statics

Main Results

 With equilibrium multiplicity we first analyze comparative statics, fixing an equilibrium

 \rightarrow Finding: the crowding out effect of public disclosure is robust at each equilibria

▶ We then apply global game refinement, which gives a unique refined equilibrium

 \rightarrow Finding: public disclosure crowds IN private information acquisition!

 \rightarrow Overturns the crowding-out result, but why?

Mechanism

- ▶ Role of global game: introducing strategic uncertainty
- ▶ Information complementarity + Strategic uncertainty \rightarrow Overturns the crowding-out result
- Without strategic uncertainty, investors have perfect knowledge about others' actions
 - \rightarrow they only care about the "local" impact of public disclosure
 - \rightarrow Information complementarity irrelevent if it is not a local property of the equilibrium allocation
- ▶ With strategic uncertainty, investors care about the "global" impact of public disclosure

 \rightarrow they take into account global changes in the value of information, including both substitutability and complementarity forces \rightarrow crowding-in could arise

General Model

- Continuum of agents. Each agent decides on a binary action of whether to acquire information or not
- ▶ Individual payoff is given by a generic function (micro-founded later):

 $\pi(\lambda,\tau,\chi)$

- ▶ λ : Share of investors who acqu. info. (Average action)
- ▶ τ : Precision of public disclosure (Aggregate state)
- ▶ χ : Individual cost of acqu. info. (Individual state, -)
- There is strategic substitutability (complementarity) if $\pi(.)$ is de(in)creasing in λ
 - Grossman and Stiglitz (1980): global substitutability
 - Other forces could create complementarity: short-termism and resale motives; relative wealth concerns; private info. on endowment...
- ▶ Will study the impact of public disclosure τ on equilibrium λ

Common Knowledge Equilibrium

At a common knowledge equilibrium (without global game refinement):

• Equilibrium $\hat{\lambda}$ determined by

$$\pi(\hat{\lambda},\tau,\chi)=0$$

 \Rightarrow Agents have perfect knowledge about others' action $\hat{\lambda}$.

• Hence the impact of public disclosure is evaluated at the particular $\hat{\lambda}$:

$$\frac{d\hat{\lambda}}{d\tau} = -\frac{\frac{\partial\pi}{\partial\tau}\left(\lambda,\tau,\chi\right)}{\frac{\partial\pi}{\partial\lambda}\left(\lambda,\tau,\chi\right)}\Big|_{\lambda=\hat{\lambda}}$$

 The lack of strategic uncertainty means only the local value of information matters

Global Game Refinement

- ▶ Assume that χ is heterogeneous and private information \Rightarrow Higher order belief matters
- Equilibrium follows a cutoff rule: acquire information iff χ_i is below some equilibrium threshold $\hat{\chi}$.
- ▶ This cutoff is determined by: (Morris and Shin, 2003)

$$\int \pi(\lambda,\tau,\hat{\chi})d\lambda = 0$$

- The integration over λ captures strategic uncertainty as agents can never observe the entire distribution of individual state
- The impact of public disclosure now needs to take into account its impact on all possible values of λ:

$$\frac{d\hat{\chi}}{d\tau} = -\frac{\int \frac{\partial \pi}{\partial \tau} \left(\lambda, \tau, \hat{\chi}\right) d\lambda}{\int \frac{\partial \pi}{\partial \chi} \left(\lambda, \tau, \hat{\chi}\right) d\lambda}$$

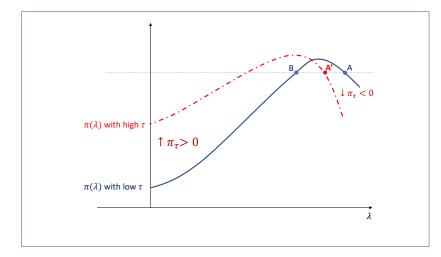
Why Global Games give different prediction?

Without global game: (focus on the stable equilibrium where information are locally substitutes):

$$\frac{d\hat{\lambda}}{d\tau} = -\frac{\frac{\partial\pi}{\partial\tau} \left(\lambda, \tau, \chi\right)\Big|_{\lambda = \hat{\lambda}}}{\underbrace{\frac{\partial\pi}{\partial\lambda} \left(\lambda, \tau, \chi\right)\Big|_{\lambda = \hat{\lambda}}}_{<0}}$$

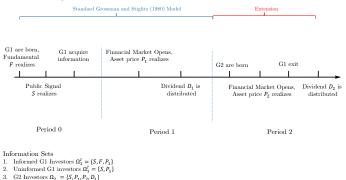
▶ With global game:

$$\frac{d\hat{\chi}}{d\tau} = -\underbrace{\frac{\int \frac{\partial \pi}{\partial \tau} \left(\lambda, \tau, \hat{\chi}\right) d\lambda}{\int \frac{\partial \pi}{\partial \chi} \left(\lambda, \tau, \hat{\chi}\right) d\lambda}}_{<0}$$


The key difference lies in the numerator where, in the former case, the impact of public disclosure on value of info. is evaluated at a particular point:

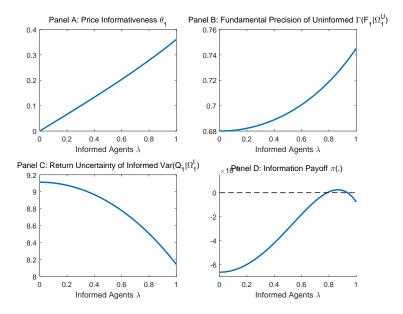
$$\left.\frac{\partial \pi}{\partial \tau}\right|_{\lambda=\hat{\lambda}}$$

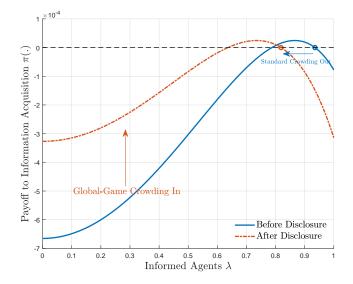
• ...while in the latter case, the impact of public disclosure is evaluated for all ranges of λ , due to the presence of strategic uncertainty:


$$\int rac{\partial \pi}{\partial au} d\lambda$$

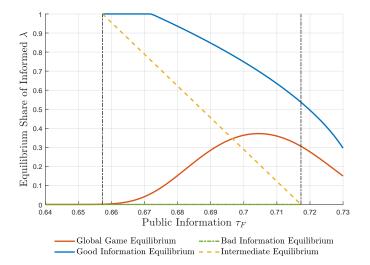
Graphic Illustration

The Micro-founded Model


Standard Grossman and Stiglitz (1980) model extended with an additional round of trading: short term trades creates resale demands


 ▶ Information substitutability: More informed investors ⇒ more information content in the current stock price ⇒ lower incentive to acquire information....
▶ Information complementarity:

More informed investors \Rightarrow more information content in the resale stock price \Rightarrow higher incentive to acquire information....


The value of information

Graphic Illustration

Optimal Disclosure

Conclusion

- This paper studies impact of public disclosure in a model with information complementarity due to short term stock investments and resale demands
- Multiple equilibrium can arise which give rise to difficulty in analyzing equilibrium
- Use global game to refine equilibria and find that public disclosure crowds in more private information acquisition (while none of the underlying equilibrium delivers such property)
- Strategic uncertainty plays crucial role in driving the crowding-in result