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Abstract

This paper studies a repeated Grossman and Stiglitz (1980)’s model with arbitrary
horizon. Each generation of investors are born observing the contemporaneous stock
price and choose whether to acquire information about the underlying fundamental.
There are three main results. First, there is always a unique equilibrium if the model
horizon is finite, and there may exist multiple equilibrium in information acquisition
if the model horizon is infinite. Second, if horizon is infinite, there exists multiple
steady states as well as a continuum nonstationary equilibria. Third, in the long
run, almost all the nonstationary equilibria converges to the intermediate steady state
which has interesting comparative statics. In particular, at that steady state, fewer
investors choose to become informed if information becomes cheaper to acquire. Two
applications are included to illustrate the potential of the infinite-horizon model in
accounting for financial market time-series data.
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1 Introduction

Investors in the financial market acquire private information and trade in order to “beat

the market”. How do investors’ information acquisition decisions interact with each other?

Grossman and Stiglitz (1980), in a static model, provides a classical view to this question:

the fact that privately-acquired information is partially revealed through prices means that

the larger is the share of informed investors today, the smaller is the return to information

acquisition. Thus information is a static substitute in that its value decreases with the share

of informed investors today1.

Since then, people have proposed various ways to generate multiplicity in information ac-

quisition. In particular, there is a literature that studies static information acquisition in

finite-horizon models. In this literature, information market only opens at the very begin-

ning. Recently, ? proposes an infinite-horizon model with dynamic information acquisition

where information market opens every period, and identifies multiplicity. Thus a question

remains: if information market is allowed to open every period, is the assumption of inifinite-

horizon essential for generating multiplicity?

To answer this question, this paper constructs a repeated Grossman and Stiglitz (1980)

economy with arbitrary horizon. Every period a new generation of investors are born, which

lives for only two periods. They observe contemporaneous stock prices and are allowed

acquire information about the underlying fundamental at some cost. The economy ends at

some arbitrary period T ≥ 2. If T = 2, the economy collapses to the one considered in

Grossman and Stiglitz (1980).

My first main result is that when T < ∞ there is always a unique equilibrium, whereas

when T = ∞, there may exist multiple equilibria. Thus the assumption of infinite-horizon

is essential to generate multiplicity in information acqusition, when the information market

is allowed to open every period. The source of multiplicity here is similar to ?: information

1Manzano and Vives (2011) shows that Grossman and Stiglitz (1980)’s substitutability result is robust
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acquisition emerges naturally not only as a static substitute, but also as a dynamic com-

plement, i.e. agents’ incentive to acquire information not only decreases with the share of

informed agents today (which corresponds to the classical insight provided by Grossman and

Stiglitz (1980)), but also increases with the share of informed agents in the future. This is

because as more agents get informed in the future, future resale stock price becomes more

sensitive to the fundamental. This creates more uncertainty for today’s uninformed agents

(as they do not know the fundamental) and urge them to become informed today. Thus

multiplicity arises due to a self-fulfilling prophecy: larger share of agents become informed

today because they expect larger share of informed agents tomorrow.

This logic, however, breaks down when T <∞. The reason is that in such a case one can pin

down the share of informed investors through backward-induction. For example, the T − 1

generation of investors’ incentive to acquire information is no longer endogenous because

there is no future generation of investors. With the T − 1 generation’s information choice

pinned down, the T − 2 generation’s information choice is pinned down as well. The logic

goes on and thus there is a unique equlibrium.

Next, I focus on characterizing equilibria of the infinite-horizon model. I proved that there

exists multiple steady states as well as a continuum of nonstationary equilibria. The existence

of nonstationary equilibria hinges on the assumption that uninformed investors observe only a

finite history of information (in this case, only the current stock price). At each nonstationary

equilibria, price coefficients are time-varying. But agents have perfect foresight and thus no

uncertainty with respect to these price coefficients.

In the long run, almost all the identified nonstationary equilibria converge to the intermediate

steady state where the value of information is upward-sloping instead of downward sloping

as in Grossman and Stiglitz (1980). This produces interesting comparative statics. For

example, fewer investors choose to become informed if the cost of acquiring information is

lower.
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Lastly, I include two examples to illustrate how the model can be used to think about time-

serios data. In one application, I illustrate how a belief shock in the model could induce a

sudden and persistent rise of uncertainty in the financial market. In the other application

I show that the model can account for the fact that passive investing has become more

popular in recent decades, even though new information and communications technologies

have reduced the cost of information acquisition.

Literature Review The theory is related to the literature of Noisy Rational Expectation

models with endogenous information acquisition (Grossman and Stiglitz, 1980; Verrecchia,

1982; Veldkamp, 2006a,b; Chamley, 2007; Barlevy and Veronesi, 2007; Ganguli and Yang,

2009; Cespa and Vives, 2014),etc. Grossman and Stiglitz (1980) and Verrecchia (1982) ob-

tains the classical result of strategic substitution in information acquisition. Later works

identifies various sources of strategic complementarity in information acquisition. Barlevy

and Veronesi (2007) argues that with correlated fundamentals and noise trading complemen-

tarity may arise. Ganguli and Yang (2009) illustrates that complementarity may result when

agents own private information about their endowment. Veldkamp (2006a,b) generates com-

plementary by embedding an increasing-return-to-scale information production sector into

an otherwise standard noisy rational expectation model. All of the above-mentioned models

are static in nature.

Second, there is also a literature that studies multiplicity in finite-horizon economy (Froot

et al., 1992; Chamley, 2007; Cespa and Vives, 2014; Avdis, 2014; Zhang, 2012) and ar-

gues that short-term trading leads to multiplicity. The literature typically relies on special

assumptions to obtain strategic complementarity in information acquisition. In particu-

lar, Chamley (2007) generates multiple equilibria by departing from the traditional CARA-

Gaussian framework. This is not necessary for my theory. Froot et al. (1992), Zhang (2012)

and Avdis (2014), although set up in different ways, all share a common assumption that

information acquisition is only allowed in the initial period. In my setup agents are allowed
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to acquire information every period, allowing for dynamic interaction of information acquisi-

tion. Lastly, the infinite-horizon setup distinguishes my theory from this literature in general

as it allows me to study long-run implications and time-series properties of the model2.

Third, the theory is also related to the literature that studies asymmetric information in

infinite-horizon models with long-lived assets, pioneered by Wang (1993, 1994) and Campbell

and Kyle (1993). It is particularly related to models that study overlapping generations of

investors (Spiegel, 1998; Bacchetta and Van Wincoop, 2006; Watanabe, 2008; Biais et al.,

2010; Albagli, 2015)3. My model differs from previous models in two aspects. First, in

my model the information acquisition choice is endogenous as opposed to the rest of the

literature where information is given exogenously. Due to this respect there exists multiple

equilibria associated with different fractions of informed investors. Second, I depart from

the steady state analysis usually employed in this literature and also study properties of

nonstationary equilibria. The model can be viewed as a first step towards studying the

impact of information choice in this class of models.

The paper is structured as follows. Section 2 sets up the model with arbitrary horizon

and defines an equilibrium. Section 3 proves the uniqueness in the finite-horizon economy.

Section 4 proves the multiplicity in the infinite-horizon economy and provides intuition of

why complementarity dominates substitutability. Section 5 studies the dynamics of the

model. Section 6 discusses two applications of the theory, one being the huge and persistent

spike of uncertainty during the Great Recession, the other being the recent passive funds

growth. Section 7 checks robustness issues. Section 8 concludes. Proofs can be found in

appendix.

2A more subtle difference is that, all the previous works assume away interim dividend payout to focus
on the implications of short-run price fluctuations. In my model, however, interim dividend payout is very
important in terms of generating multiplicity. Thus agents in my model can be interpreted as finitely-lived
long-term investors who care not only about future resale stock price, but also about future dividend. In
fact, Spiegel (1998); Watanabe (2008); Biais et al. (2010) all calibrate their models to annual data.

3This literature identifies high volatility equilibria and low volatility equilibria with different stock price
sensitivity with respect to noise trader risks.
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2 An Economy with Horizon T

This section describes the physical environment for an economy with arbitrary horizon T ,

where T can take any integer value from 1 to ∞. When T = ∞ I refer to this economy as

infinite-horizon. Otherwise T < ∞ it is finite-horizon. Roughly, it can be understood as a

repeated version of Grossman and Stiglitz (1980). Indeed, when T = 1, it collapses to the

classic Grossman and Stiglitz (1980) economy.

The economy is populated by a continuum of overlapping-generation risk-averse agents who

consume a single consumption goods. The goods is treated as numeraire. There are two

assets in the economy: a bond in perfect elastic supply, paying return R4; and a stock in

fixed supply (normalize to 1) which pays dividend Dt = θ+εt each period (except the initial

period). θ ∼ N (µ, σ2
θ) is drawn by nature before the world begins and is constant over time.

In later sections of the article I call θ the stock’s ‘fundamental’. εt ∼ N (0, σ2
ε) is i.i.d. noise

in stock return.

Investors live for two periods. The initial generation is endowed with 1 unit of stock and

w units of risk-free bonds. Later generations are endowed with only w units of risk-free

bonds. They have CARA utility so initial endowment does not matter for their information

acquisition choice or portfolio choice, as the utility function admits no wealth effect. Initially

they observe nothing but the prior of θ. They have an option to observe θ at some cost χ.

I refer to χ the information cost. After the information acquisition decision is made the

market opens and trade occurs. Investors form their portfolio. In the next period, they

receive dividend and interest payments, liquidate their position in the asset market, exit and

consume their wealth.

As is standard in the noisy rational expectation literature, I introduce noise trader risk to

prevent asset price from full revealing. I model it as overlapping generations of noise traders

mechanically trade stocks in the first period and automatically reverse their trade in the next.

4Alternatively one can interpret the bond as a storage technology without nonnegative constraint.
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This guarantees independence of noise trader risk across periods. The assumption simplifies

the analysis and is not essential to my result. The modeling device is widely adopted in the

literature (Allen et al., 2006; Gao, 2008; Brown and Jennings, 1989).

The time line is as follows:

• Stage 1: Nature draws θ ∼ N (µ, σ2)

• Stage 2: OLG investors trade

– In period 1:

1. A continuum of period-1 investors are born, endowed with 1 share of stock

and w unit bonds. Investors have CARA utility.

2. Period-1 investors decide whether to observe θ at cost χ

3. Market opens. Two groups of agents trade:

(a) Period-1 investors

(b) Period-1 noise traders. Their demand is a random variable x1 ∼ N (0, σ2
x)

– In period 1 < t ≤ T :

1. A continuum of period-t investors are born, endowed with 0 share of stocks

and w unit bonds. Investors have CARA utility.

2. εt ∼ N (0, σ2
ε) is realized, Dt = θ + εt is paid out to shareholders. Interest on

bonds is paid out.

3. Period-t investors decide whether to observe θ at cost χ

4. Market opens. Four groups of agents trade:

(a) Period-t investors

(b) Period-t noise traders. Their demand is a random variable xt ∼ N (0, σ2
x)
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1. Period 1 agents are born. 
• Endowed with 1 unit 

stock
• Information choice: 

know 𝜃 at cost 𝜒

2. Market opens. Trade with 
noise traders

1. Dividends paid to period 
t-1 agents

2. Period t agents are born. 
• Endowed with 1 unit 

stock
• Information choice: 

know 𝜃 at cost 𝜒

3. Market opens. Trade with 
period t-1 agents and 
noise traders

4. Period t-1 agents exist and 
consume their wealth

1. Dividends paid to period 
T agents

2. Period T agents exit and 
consume their wealth

Period 1 ……. Period 𝑡 ∈ {2,3,4…𝑇} ……. Period 𝑇 + 1

Figure 1: Timeline of Economy with Horizon T

(c) Period-t− 1 investors. They liquidate their position

(d) Period-t − 1 noise traders. They reverse their trade last period. Their

demand is given by −xt−1.

5. period-t− 1 investors exit and consume their wealth

– In period T + 1

1. εt ∼ N (0, σ2
ε) is realized, Dt = θ + εt is paid out to shareholders. Interest on

bonds is paid out.

2. period-T investors exit and consume their wealth

Several simplifying assumptions are made to make the analysis transparent. First, noise

trader shock is i.i.d. over time. Second, the value of fundamental θ is time invariant. Third,

and perhaps most crucially, uninformed agents cannot observe past prices and dividends to
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infer current value of fundamental. I will relax these assumptions in later sections and show

that none of these assumptions is essential to the result.

2.1 Individual agents’ problem

Agents make two choices sequentially. First, they make their information acquisition choice:

Vt = max{V I
t , V

U
t }

Where V I
t denotes expected utility for agents acquiring information (later I call them in-

formed agents); V U
t denotes expected utility for agents not acquiring information (later I

call them uninformed agents). V I
t and V U

t are determined by agents’ portfolio choice:

V i
t =

∫
P
V i
t (P )dFt(P )

V i
t (P ) = maxet,bt,c(Pt+1,θ,εt+1)

∫
Pt+1,θ,εt+1

U(c(Pt+1, θ, εt+1))dH(Pt+1, θ, εt+1|I it)

etPt + bt ≤ w + Pt1{t=1}−1{i = I}χ

c(P ′, θ, ε′) ≤ (D(θ, εt+1) + Pt+11{t6=T})e+Rbt

Where IUt = {Pt}, IIt = {Pt, θ}, U(c) = − exp(−αc), α is the risk averse parameter. D(θ, εt+1) =

θ + εt+1, F,H are equilibrium objects as price is determined in general equilibrium.

The equation says the following. V i(P ) is the expected utility of each type of agents after market

opens and current price is realized. Observing current stock price P agents of each type choose

equity holding e, risk free bond holding b and a contingent consumption plan to maximize their

expected utility V i(P ). The tradeoff here is that if agents choose to acquire information, then they

need to incur information cost χ. Meanwhile he observes the true value of θ.

Note that for generation 1 agents, besides w units of bonds they are also endowed with 1 unit

of stocks, thus their endowment is given by w + Pt. The endowment structure is not essential as

agents’ have CARA utility. For the last generation T agents, their stocks have no resale value.
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Thus, PT+1 = 0.

2.2 Equilibrium Definition

Let λt be the equilibrium fraction of informed agents in period t.

Definition 2.1 Denote st = {θ, xt}, An equilibrium of an economy with horizon T is

{Pt(st), λt, {sti(st), bti(st)}i=U,I}Tt=1 s.t:

1. eti(st), bti(st) solves uninformed and informed agents’ problem given Pt(st).

2. Market clears: λtetI(st) + (1− λt)etU (st) + x(st) = 1,∀st, t

3. VtU = VtI if λt ∈ (0, 1); if λt = 0, VtU ≥ VtI ; if λt = 1, VtU ≤ VtI

The last condition guarantees that agents’ information choice is optimal. That is, in equilibrium

it must be the case that no one is willing to deviate in their information choices. For instance, if

there is positive fraction of both informed and uninformed investors (λt ∈ (0, 1)), it has to be the

case that expected utility of the informed and uninformed are equalized.

It is challenging to solve Noisy Rational Expectation Model with general, potentially nonlinear,

price functions. Hence in later analysis, I accord with the literature and restrict myself in the class

of linear equilibrium.

Definition 2.2 A linear equilibrium is an equilibrium where price functions are linear with respect

to their arguments. i.e. there exists {At, Bt, Ct}Tt=1 such that

Pt(θ, x) = At +Btθ + Ctx.

Except otherwise noted, in later sections I will restrict the attention to linear equilibrium.
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3 Uniqueness in Finite Horizon Economy

In this section I briefly analyze equilibrium in finite-horizon economy. The main result here is that

finite-horizon economy always yields a unique equilibrium. This result is intuitive. Note that when

T = 1, the economy collapses to the static model used in Grossman and Stiglitz (1980). And it is

well-known that there exists a unique equilibrium in that environment.

For 1 < T < ∞, uniqueness follows directly from backward induction. To see this, note that the

generation T agents essentially live in a one-period static world. Thus their decision rule is uniquely

pinned down, so as the period-T equilibrium price function. With a uniquely pinned down period-T

price function, generation T −1 agents also lives in a static world and thus period T −1 equilibrium

price function is also uniquely pinned down. Thus the backward induction process goes on and as

a result equilibrium is unique. I summarize the above reasoning in the following proposition:

Proposition 3.1 When T <∞, there is a unique linear equilibrium in the economy with horizon

T .

Proof. When T = 1, the model is identical to that of Grossman and Stiglitz (1980) (with some

slight differences on distribution of endowments, these differences are not essential). Thus there is

a unique equilibrium when T = 1(Grossman and Stiglitz, 1980, Theorem 3 on page 398). When

T > 1, consider the problem faced by generation T agents. They essentially live in a one-period

world and thus the number of informed agents in period T , λT , and the price function PT (θ, xt) is

uniquely pinned down. Consider the problem faced by generation T − 1 agents. They also live in

a static world with future stock payoff D(θ, εt) + PT (θ, xt). Thus there is a uniquely pinned down

λT−1 and PT−1(θ, xt). The iteration goes on and therefore there exists a unique equilibrium.

4 Multiplicity in Infinite Horizon Economy

In this section I analyse the case T = ∞. As in the previous section, I allow agents to make

information choice at each date. The uniqueness result is overturned. There is a new source of

multiplicity: there exists multiple equilibria associated with different equilibrium paths of agents’

11



information choices.

Multiplicity in infinite-horizon overlapping-generation economy is not new (Spiegel, 1998; Watan-

abe, 2008; Biais et al., 2010; Albagli, 2015). Note that all the works take information choices as

exogenous and the multiplicity arises because of agents’ forward-looking portfolio decision. Here

I endogenize the information choice and identify a new source of multiplicity due to the forward-

looking nature of information acquisition decision.

The backward induction approach is no longer valid as there is no meaningful last period. Thus I

take a different approach to characterize equilibria. Before getting into the details, let me define

steady states in this economy, which is a subset of equilibria where the equilibrium price functions

(and thus agents’ information choices) are time-invariant:

Definition 4.1 Denote s = {θ, x}, A steady state of an economy with horizon T = ∞ is

{P (s), λ, {si(s), bi(s)}i=U,I} s.t:

1. ei(s), bi(s) solves uninformed and informed agents’ problem given P (s).

2. Market clears: λeI(s) + (1− λ)eU (s) + x(s) = 1,∀st, t .

3. VU = VI if λ ∈ (0, 1); if λ = 0, VU ≥ VI ; if λ = 1, VU ≤ VI

Remark 1 If {P (s), λ, {si(s), bi(s)}i=U,I} is a steady state, then {P (st), λt, {si(st), bi(st)}i=U,I}∞t=1

is an equilibrium.

4.1 Proving the multiplicity result

The purpose of this section is to establish the existence of multiple steady states associated with

different fraction of informed investors in infinite horizon economy(theorem 1). To do so, I take the

following steps:

1. First define steady states in an economy where information(i.e. fraction of informed investors

λ) is exogenous. Denote it exogenous-information steady state Φ(λ) (definition 4.2 and

definition 7.1).
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2. At each Φ(λ) compute the difference of the utility of the informed and uninformed. Denote

it value of information π(λ) (definition 4.4).

3. If π(λ) is equal to some measure of the utility cost of acquiring information (unless at bound-

ary), Φ(λ) is a steady state (lemma 4.2).

4. If there are multiple such λ, we find multiple steady states (lemma 4.3 and theorem 1).

Step 1: Define exogenous-information steady state Φ(λ)

Intuitively, exogenous-information steady state is just steady state in an economy where agents’

information choice is exogenous, as studied in Spiegel (1998); Watanabe (2008); Biais et al. (2010):

Definition 4.2 An exogenous-information steady state given λ is {P (s), λ, {si(s), bi(s}i=U,I} such

that it satisfies condition 1 and 2 stated in definition A.1.

As is well known in this literature, there exists multiple exogenous-information linear steady states

given any λ. To make exposition transparent, I will focus on the low volatility one5 in the main part

of the analysis. Note that I do not take any stand on which equilibria one should select, as both

low-volatility and high-volatility equilibria have desirable properties. The purpose of focusing on

low-volatility equilibrium is to, loosely speaking, ‘fix’ the multiplicity arising due to agents’ portfolio

choice and show that there is a new source of multiplicity associated with agents’ information choice.

Definition 4.3 A low-volatility exogenous-information steady state Φ(λ) given λ is

{P (s), λ, {si(s), bi(s}i=U,I} such that

1. It is an exogenous-information steady state. In particular, there exists {A,B,C} such that

P (s) = A+Bθ(s) + Cx(s).

5the low volatility steady state may also be the reasonable one to focus on since it has properties analogous
to those found in the infinitely lived agents models of Campbell and Kyle (1993) and Wang (1993, 1994).
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2.

C =
R−
√
R2−4α2σ2

x(σ2
ε+σ2

θ)

2ασ2
x

if λ = 0

C =
λ(B+1)/B−

√
[λ(B+1)/B]2−4α2σ2

xσ
2
ε

2ασ2
x

if λ ∈ (0, 1]

Note that corresponds to each λ there is at most a unique low-volatility exogenous-information

steady state Φ(λ).

One may wonder about the existence of exogenous-information steady state. As in Spiegel (1998),

I provide condition such that exogenous-information steady states exist at least locally near λ = 0.

Assumption 1

R2 − 4α2σ2
x(σ2

ε + σ2
θ) > 0

This is a standard assumption in the literature. The following lemma illustrates the usefulness of

assumption 1.

Lemma 4.1 Under assumption 1 and for λ sufficiently small, a low-volatility exogenous-

information steady state Φ(λ) exists.

Proof. See appendix.

In later analysis, I assume that assumption 1 holds.

Step 2: defining value of information π(λ)

The value of information is the ratio of expected utilities of the informed and uninformed, at each

low-volatility exogenous-information steady state indexed by λ.

Definition 4.4 Given Φ(λ), denote the expected utility of the informed W I and uninformed WU .

Define:

π(λ) = WU/W I
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Where W i, i = I, U are given by:

W i =
∫
θ,xW

i(P (θ, x))df(θ, x)

W i(P ) = maxe,b,c(θ,ε′,x′)
∫
θ,ε′,x′ U(c(θ, ε′, x′))dh(θ, ε′, x′|Ii)

eP + b ≤ w

c(θ, ε′, x′) ≤ (D(θ, ε′) + P (θ, x′)e+Rb)

Where IU = {P}, II = {P, θ}.

Step 3: Comparing value of information π(λ) with some measure of information cost

The next lemma shows that the value of information function π(λ) allows us to directly compare ex-

pected gain from acquiring information to the cost of acquiring information and determine whether

φ(λ) is an steady state.

Lemma 4.2 ∀λ ∈ (0, 1), Φ(λ) is a steady state if and only if:

π(λ) = exp(αRχ)

For λ = 0 (1), Φ(λ) is a steady state if and only if:

π(λ) ≤ (≥) exp(αRχ)

Proof. Pick the case λ ∈ (0, 1). The other cases are similar to verify. It can be shown that under

CARA utility: V U = WU ; V I = W IeαRχ. Thus if π(λ) = eαRχ holds, then:

V U

V I
=

WU

WUeαRχ
=
π(λ)

eαRχ
= 1

Thus all the conditions for a steady state holds for φ(λ). φ(λ) is a steady state.

Step 4: Proving multiplicity
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The goal of the last step is to show that (under some conditions) there exists multiple values of

λ satisfying conditions stated in lemma 4.2. Therefore by lemma 4.2, there exists multiple steady

states.

To do so, let me state the following lemma:

Lemma 4.3 Under some regularity condition B.16,

dπ(λ)

dλ
> 0 for λ sufficiently small

Proof. See appendix.

The lemma says that incentive of people to become informed, π(λ), increases as there are more

informed investors. This is in sharp contrast with the classical substitution effect in Grossman and

Stiglitz (1980).

The next theorem establishes the multiplicity result:

Theorem 1 Under some regularity condition B.16, there exits χ such that multiple steady states

exist.

Proof. See appendix.

Remark 2 B.16 is satisfied when either σθ or σx is sufficiently small. It is also satisfied under

fairly general parameterizations, including those values used in the literature, say by Veldkamp

(2006a).

In figure 11 I numerically solve and plot function π(λ). The crucial feature of π(λ) is that it is

monotonically increasing in λ for λ sufficiently small (lemma 4.3). Pick χ such that it crosses

the upward sloping proportion of π(λ). This gives us the middle steady state. Now, λ = 0 is

another steady state because the cost of acquiring information is strictly greater than the value of

information (lemma 4.2). Thus we obtain another steady state. Lastly, depending on whether π(λ)

may cross the information cost line the second time, we obtain another interior (boundary) steady

state. Overall speaking, as long as there is an upward sloping proportion of π(λ), there exists a
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θ = 0.01, σ2

ε = 0.3, σ2
x = 0.4, χU = 1.01.

Note that three steady states exist: λ = 0, 0.74, 1

Figure 2: Steady-state gain from becoming informed: π(λ)

level of information cost χ such that multiple steady states exist.

One can see that the crucial step leading up to the multiplicity result is the existence of an upward

sloping proportion of π(λ). Intuitively, this means that information is more valuable when there

are more informed investors. This is not straightforward, given that there is static substitutability

arising due to market learning. Thus the next section is devoted to explaining agents’ incentive to

acquire information and in particular why there is an upward sloping proportion of π(λ).

4.2 Inspecting the Mechanism

How do value of information change as the number of informed agents changes? Why is the value

of information π(λ) locally increasing for λ sufficiently small? This section is devoted to explaining

the intuition.

Suppose you live in an exogenous-information steady state with λ number of informed agents. Now
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consider a perturbation from λ to λ + ∆. How does this perturbation impact your incentive to

acquire information, that is, the value of information? First, there are more informed agents today,

so today’s price becomes more informative of fundamental θ, reducing the value of information.

Second, there are more informed agents tomorrow, so future price also becomes more sensitive to

the fundamental, increasing the value of information today. This intuition motivates us to isolate

substitutability and complementarity by considering an economy where there are λ1 number of

informed agents today and λ2 number of informed agents from tomorrow on.

Definition 4.5 ∀λ1, λ2, an equilibrium in an infinite-horizon economy with λ1 informed agents in

period 1 and λ2 informed agents in later periods is {Pt(st), λt, {sti(st), bti(st)}i=U,I}∞t=1 such that

condition 1 and condition 2 in definition 2.1 are satisfied.

In this environment, we are interested in the value of information for period-1 agents:

Definition 4.6 Denote expected utility for period-1 uninformed and informed agents

WU
1 (λ1, λ2),W I

1 (λ1, λ2). Then the period-1 value of information is defined as:

πd(λ1, λ2) =
WU

1 (λ1, λ2)

W I
1 (λ1, λ2)

Remark 3 π(λ) = πd(λ, λ). i.e. Value of information in an exogenous informaiton steady state is

just the value of information when there are constant fraction of informed agents both today and

tomorrow on.

The fact that π(λ) = πd(λ, λ) allows one to decompose the effect of perturbing λ into perturbing

today’s λ and future λ:

dπ(λ)

dλ
=

∂πd
∂λ1

(λ, λ)︸ ︷︷ ︸
static substitution effect

+
∂πd
∂λ2

(λ, λ)︸ ︷︷ ︸
dynamic complementary effect

(4.1)

The next proposition makes it clear that locally near λ = 0, substitutability is dominated by

complementarity:
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Figure 3: The value of information at the exogenous information steady state with no in-
formed agents is given by: π(0) = πd(0, 0). Increasing today’s λ (first argument of πd)
reduces value of information (substitutability). Increasing future λ (second argument πd)
increases value of information (complementarity). When varying both today and future λ,
complementarity dominates substitutability. Thus (locally) value of information increases.

Proposition 4.1 At λ = 0:

∂πd
∂λ1

(λ, λ) = 0

Under some regularity condition B.16:

∂πd
∂λ2

(λ, λ) > 0

Proof. See appendix.

Given equation 4.1 and proposition 4.1, lemma 4.3 can be trivially verified. Proposition 4.1 is

illustrated in figure 3.

Why would perturbing future number of informed agents have larger impact on the value of in-

formation than perturbing current number of informed agents? To understand this, we need to

further characterize the value of information function πd(λ1, λ2). The next lemma states that the
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value of information is just the relative stock payoff (sum of future stock price and future dividend)

uncertainty faced by uninformed and informed agents, conditional on their information sets.

Lemma 4.4

πd(λ1, λ2) =

√
V ar(D2 + P2|P1)

V ar(D2 + P2|P1, θ)

Proof. See appendix

P2 +D2 is the period-2 stock payoff, including future stock price P2 and D2. Period-1 uninformed

agents observe P1, thus V ar(D2 + P2|P1) is the stock payoff uncertainty faced by the uninformed

agents. Informed agents also observe θ, thus their stock return uncertainty is given by V ar(D2 +

P2|θ, P1). Both conditional variances are functions of λ1, λ2:

Lemma 4.5

V ar(P2 +D2|P1, θ) = C2(λ2)2σ2
x + σ2

ε

V ar(P2 +D2|P1) = (B2(λ2) + 1)2σ2
θ + C2(λ2)2σ2

x + σ2
ε︸ ︷︷ ︸

Unconditional uncertainty

− Ω(λ1, λ2)[(B2(λ2) + 1)2σ2
θ ]︸ ︷︷ ︸

Uncertainty reduction term

Where:

1. Ω(λ1, λ2) =
B1(λ1, λ2)2σ2

θ

B1(λ1, λ2)2σ2
θ + C1(λ1, λ2)2σ2

x

.

2. B1(λ1, λ2), C1(λ1, λ2), B2(λ2), C2(λ2) are endogenous coefficients of price function P1, P2,

i.e.P1(θ, x1) = A1(λ1, λ2) + B1(λ1, λ2)θ + C1(λ1, λ2)x1; P2(θ, x1) = A2(λ2) + B2(λ2)θ +

C2(λ2)x2;

Proof. See appendix.

The lemma is straightforward to understand. The expression of P2 +D2 is given by:

P2 +D2 = A2 +B2θ + C2x2︸ ︷︷ ︸
P2

+ θ + ε2︸ ︷︷ ︸
D2

= A2 + (B2 + 1)θ + C2x2 + ε2
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Thus unconditional variance V ar(P2 + D2) is given by: (B2 + 1)2σ2
θ + C2

2σ
2
x + σ2

ε . For informed

agents, they observe θ perfectly, so what remains uncertain to them is just x2 and ε2. Thus

V ar(P2 +D2|P1, θ) = C2
2σ

2
x + σ2

ε (Note that P1 is not useful in predicting x2 or ε2).

To the extent that P1 is only a noisy signal of θ, uncertainty in θ cannot be completely wiped out

by observing just P1. Specifically, the term Ω captures how useful P1 is in reducing the uncertainty

in θ. Ω is just equal to the fraction of variance of current price P1 = A1 + B1θ + C1x1 due to

fundamental θ:

Ω =
B2

1σ
2
θ

B2
1σ

2
θ + C2

1σ
2
x

To understand this, consider extreme cases. Suppose in equilibrium B1 = 0, C1 6= 0 . Then

P1 = A1 + C1x1. All the variations in P1 is due to noise x, thus Ω = 0. According to lemma

4.5, V ar(P2 + D2|P1) = (B2 + 1)2σ2
θ + C2

2σ
2
x + σ2

ε , the unconditional variance. If in equilibrium

B1 6= 0, C1 = 0, then P1 = A1 + B1θ: all the variation in P1 is due to θ. This makes P1 a clean

signal of the fundamental, thus Ω = 1. In this case uninformed agents, as informed agents, know

perfect the value of θ. Hence as expected V ar(P2 + D2|P1) = C2
2σ

2
x + σ2

ε . More generally, the

higher the variance of P1 due to θ, the more informative P1 is, hence the lower the stock payoff

uncertainty faced by the uninformed agents. The crucial thing to notice that Ω is related to the

variance of P1.

Combining lemma 4.2 and lemma 4.5, we obtain an expression for πd:
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πd(λ1, λ2) =

√
V ar(D2 + P2|P1)

V ar(D2 + P2|P1, θ)

=

√
(B2(λ2) + 1)2σ2

θ + C2(λ2)2σ2
x + σ2

ε − Ω(λ1, λ2)[(B2(λ2) + 1)2σ2
θ ]

C2(λ2)2σ2
x + σ2

ε

=

√
1 +

(1− Ω(λ1, λ2))[(B2(λ2) + 1)2σ2
θ ]

C2(λ2)2σ2
x + σ2

ε

=

√√√√√
1 +

(1−
B1(λ1, λ2)2σ2

θ

B1(λ1, λ2)2σ2
θ + C1(λ1, λ2)2σ2

x

)[(B2(λ2) + 1)2σ2
θ ]

C2(λ2)2σ2
x + σ2

ε

(4.2)

Where the first equality follows from lemma 4.2. Second equality follows from 4.5. Third and last

equality follows from simplification.

Proposition 4.2 there exists some function Π : R4 → R such that:

πd(λ1, λ2) = Π(B2
1 , (B2 + 1)2, C2

1 , C
2
2 ) (4.3)

Where B1 = B1(λ1, λ2), B2 = B2(λ2), C1 = C1(λ1, λ2), C2 = C2(λ2) are all endogenous coefficients

on the price function P1 and P2

Proof. Directly follows from the last equality of equation 4.2.

Proposition 4.2 lies in the heart of the intuition: value of information is a quadratic function of

equilibrium price coefficients B1, B2, as both substitutability and complementarity work through

variance (of stock price or stock payoff). Note that λ1 mainly work through B1, the loading

coefficient of current price P1, whereas λ2 mainly work through B2, the loading coefficient of future

price P2. To see how change in λ1 and λ2 affects value of information, take derivatives (by applying

the chain rule) and evaluate the derivative at λ = 0, focusing on its effect through coefficient B1
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and B2
6:

∂πd(λ, λ)

∂λ1
≈ Π1︸︷︷︸

−

2B1︸︷︷︸
=0 when λ=0

∂B1

∂λ1︸︷︷︸
+

= 0 (4.4)

Where H1 is just derivative with respect to its first argument. It is negative capturing the sub-

stitutability: when B1 increases, current price becomes more sensitive to θ, value of information

decreases. Note that B1(λ, λ) = 0 when λ = 0. That is, if there are no informed agents today

(λ = 0), no one knows the true value of θ. Thus equilibrium price will be insensitive to θ: B1 = 0.

Thus equation 4.4 makes it clear that since πd is a quadratic function of B1 passing through the

origin, marginal increase of B1 from 0 has no effect on the value of information.

In contrast, as πd is a quadratic function of B1 not passing through the origin, marginal increase

of B1 from 0 has nontrivial effect on the value of information.

∂πd(λ, λ)

∂λ2
≈ Π2︸︷︷︸

+

( 2B2︸︷︷︸
=0 when λ=0

+2)
∂B2

∂λ2︸︷︷︸
+

> 0 (4.5)

Where H2 is just derivative with respect to its second argument. It is positive capturing the

complementarity. Why does (B2 + 1)2 enter into the value of information instead of B2
2? This is

because agents not only care about future stock price, but also future dividends. In other words,

they care about total stock payoff P2 +D2 = A2 + (B2 + 1)θ + C2x2 + ε2. In contrast the current

price is just P1 = A1 +B1θ + C1x1. Thus stock payoff has higher loading on θ than current stock

price. This, combined with the fact that variance is a convex function of the loading coefficients

B1 and B2, implies that perturbing future price’s loading on fundamental B2 has larger impact on

the value of information than perturbing current price’s loading on fundamental B1. As a result,

complementarity may dominate substitutability 7.

6For illustrative purpose we ignore the fact that C1, C2 are also functions of λ. In the formal proof of
proposition 4.1, this is guaranteed by the regularity condition B.16 that the derivative with respect to C1

and C2 are sufficiently small.
7One may wonder why substitutability dominates complementarity when λ is large. It is due to other

terms of the derivative in equation 4.4 and 4.5. In particular, term Π1 may be greater than Π2, so ∂πd(λ,λ)
∂λ1

may be greater than ∂πd(λ,λ)
∂λ2

. This effect does not play a major role when λ is small, so that ∂πd(λ,λ)
∂λ1

is of

an order of magnitude smaller than ∂πd(λ,λ)
∂λ2

.
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5 Dynamics

In this section I depart from the steady state analysis and study the dynamics of the model. In

the long run, there exists a unique low-volatility steady state to which nonstationary equilibria

may converge. At that steady state information acquisitions are complements (π′(λ) > 0). Given

the highly nonlinear structure of the model, theoretically I can only characterize the limiting case

where σθ is taken to some extremely small number. I also verify that the results carry over to more

general set of parameters, by conducting numerical experiments. I also numerically characterize

the set of nonstaionary equilibria.

The following lemma states that for all equilibria, the (potentially time-varying) coefficients on the

equilibrium price function must satisfy a first order difference equation:

Lemma 5.1 Suppose {Pt(st), λt, {sti(st), bti(st)}i=U,I}∞t=1 is an equilibrium in the infinite horizon

economy. Then the coefficients of the price function Pt(st) = At + Btθ(st) + Ctxt(st) satisfy a

first-order difference equation:

(Bt, Ct) = F (Bt+1, Ct+1)

for some function F .

Proof. See appendix.

Intuitively, as agents only live for two periods, they only care about today and tomorrow’s price.

Hence given tomorrow’s price function Pt+1(θ, x) = At+1+Bt+1θ+Ct+1x., agents optimally chooses

whether to become informed or not today. Thus λt is a function of Bt+1, Ct+1: λt = λt(Bt+1, Ct+1).

To the extent that today’s aggregate demand of stock is a function of λt, Bt+1, Ct+1, today’s equi-

librium price is also a function of these variables.That is:

(Bt, Ct) = F2(λt(Bt+1, Ct+1), Bt+1, Ct+1)

This implicitly defines a transition function from Bt+1, Ct+1 to Bt, Ct. Thus we obtain F . Given
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the transition function F , one is able to examine stability of different steady states. The notion of

stability I adopt is:

Definition 5.1 A steady state with price function P = Ã+ B̃θ + C̃x is:

1. stable if there exists a two-dimensional neighborhood of (B̃, C̃) such that for any sequence

{(Bt, Ct)}∞t=0 that starts in that neighborhood, it converges to (B̃, C̃) as t→∞.

2. saddle-path stable if there exists a single-dimensional neighborhood (stable manifold) of (B̃, C̃)

such that for any sequence {(Bt, Ct)}∞t=0 that starts in that neighborhood, it converges to

(B̃, C̃) as t→∞.

3. unstable if it is not stable nor saddle-path stable.

The next theorem shows the stability of different steady states:

Theorem 2 Suppose σθ is sufficiently small and strictly positive. Then:

1. There exists χ such that three steady states exist with different level of λ : λ1 = 0,λ2 ∈

(0, 1),λ3 = 1.

2. The steady states associated with λ1 and λ3 are unstable.

3. The steady state associated with λ2 is either stable or saddle-path stable with π′(λ2) > 0.

The theorem is proved under the limiting case where σθ tends to 0. The result of the theorem,

however, holds under more general parameterizations. In general, if there exists 3 steady states,

the steady state with intermediate level λ is the only steady state to which nonstationary equilibria

may converge (figure 4)8.

8 The crucial step of solving for nonstationary equilibria is to approximate the stable manifold φ(Bt, Ct)
around the intermediate steady state using eigenvalues of the Jacobian matrix of the transition function
evaluated at the steady state. Details are available upon request.
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Figure 4: steady states (blue) and nonstationary equilibria(red)

6 Applications

6.1 The Persistence of Uncertainty after the 2008 Crisis

The dynamic repeated-information-decision framework allows the model to speak to the issue of

persistence of information. In particular, the theory provides a novel explanation for the persistently

high uncertainty after the 2008 recession based on expectation: if people expects high uncertainty

tomorrow (no one acquires information tomorrow), their incentive to learn today is also reduced.

Thus the economy may be “trapped” in a high-uncertainty steady state due to pessimistic beliefs

of agents about the future. This creates room for policy intervention.

To illustrate the idea, I introduce unexpected belief shocks into the model. The belief shock works

as follows. Suppose the economy operates at a steady state where λ = 1. The steady state is

supported by investors’ belief that λ = 1 in the future. If, however, at some date there is a shock

to investors’ belief of how many informed investors there are in the future, then the economy will
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Figure 5: Impulse response to belief shock in period 6

suddenly shift to another steady state with fewer informed investors. As there are less information

in this economy, investors in aggregate face more uncertainty. This resembles “uncertainty shock”

which drives up risk premium and depresses asset price, leading to a stock market crash. Note that

the economy would be trapped at the low-λ steady state absent any belief shocks thereafter.

Interestingly, average stock market volatility increases on impact due to the large drop of asset

price, but ends up lower than pre-crisis level even though uncertainty remains high. This echoes

Fajgelbaum et al. (2014)‘s point that stock market volatility might be a poor measure of uncertainty.

That is, stock market volatility can be low whereas uncertainty is high.

6.2 The decrease of information cost and the growth of passive

investing

The past 20 years witnesses substantial transformation of information technology and rapid de-

velopment of the Internet. This makes more data easily accessible to investors. According to the

conventional wisdom (and prediction of the static Grossman and Stiglitz (1980) model), this should

lead to more investors acquiring information in the stock market, as information becomes less costly
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Figure 6: The left panel displays measure 1, total net assets held by ETFs and passive
mutual funds as percentage of total net asset held by all domestic mutual funds and ETFs.
The right panel displays measure 2, US equity held by passive institutional investors and
mutual funds as percentage of US equity held by all institutions and mutual funds.

to acquire.

This prediction is at odds with the data. To show this, I use passive investing v.s. active investing

as a proxy for the fraction of informed and uninformed investors (Garleanu. et al. (2015)). I collect

data from Invest Company Year Book, Flow of Funds, and French (2008) and obtain two measures

of popularity of passive investing: first, total net assets held by ETFs and passive mutual funds

as a percentage of total net asset held by all domestic mutual funds; second, US equity held by

passive institutional and mutual funds as a percentage of US equity held by all institutions and

mutual funds. Both statistics show that passive investing grows relative to active investing (figure

6), implying that agents are acquiring less information despite the fact that information collection

has become less costly.

The prediction from the dynamic model is consistent with such observation. As shown in figure 7,

a drop of the information cost reduces the number of informed agents at the unique low-volatility

stable steady state. This is because value of information π(λ) is locally increasing at the stable

steady state9.

9Here I restrict my attention to low-volatility steady states. One can also examine the stability of
different high-volatility steady states. Turns out there exists a unique stable high-volatility steady state.
At that high-volatility steady state, a drop of the information cost reduces the number of informed agents.
Thus, results are qualitatively unchanged if one studies high-volatility steady states.
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Figure 7: As information cost drops, less agents choose to aquire information.

I further conduct numerical experiment to examine the quantitative potential of the model. To do

so, I first need to calibrate the model to some key moments of the US stock market. I set risk free rate

R to 1.03 as it is an annual model. I set risk aversion coefficient α to 1.5, as in Veldkamp (2006a). I

set variance of noise supply σ2
x to 0.25 as in Easley et al. (2015). There are three parameters left to

estimate: prior uncertainty σ2
θ , idiosyncratic noise in dividend payout σ2

ε , and information cost χ.

I estimate the three parameters to match: equity premium 6.5% (Campbell and Cochrane, 1999;

Bansal and Yaron, 2004), average price dividend ratio 21.1 (Campbell and Cochrane, 1999), and

82% informed investors as in the data(trend) of 1986. The resulting parameters are σ2
θ = 0.002,

σ2
ε = 0.308, and χ1986 = 0.00564, where χ1986 is the (indirectly inferred) information cost in 1986.

Note that the model produces a sharpe ratio of 0.89, in the data it is 0.5.

Next, I assume that the information cost decreases at constant annual rate µχ. That is, χt =

(1− µχ)χt−1. I set µχ such that the model produces the same fraction of informed investors as in

the data(trend) in 1995. The resulting µχ is 6.35% . Given µχ, I am able to back out values of

χt for each t. Then I solve for the long-run steady state fraction of informed agents for each χt.

29



Exogenously Determined Value Source

Risk Free Rate R = 1.03 Annual Model

Risk Aversion α = 1.5 Veldkamp (2006a)

Volatility of Noise Trade σ2
x = 0.25 Easley et al. (2015)

Endogenously Determined Value Source

Prior Uncertainty σ2
θ = 2.00× 10−3 Mean Price/Dividend Ratio 21.1

Volatility of dividend noise σ2
ε = 3.08× 10−1 Equity Premium 6.5%

Information cost χ1986 = 5.64× 10−2 82% active investors

Untargeted Moment

Sharpe ratio 0.89 (model) 0.5(data)

Table 1: Parameterization

Figure 8 displays the model-generated growth of passive investing, against the data10.

I also compute other statistics associated with different information costs(figure 9). As information

cost drops, equity premium drops, market capitalization increases. This is because as stock price

becomes less sensitive to fundamental, stocks become a safer asset for uninformed agents. As a

result, they demand lower equity premium and push up stock price. These predictions are consistent

with the data. The model predicts that stock return variance is decreasing. This is hard to identify

in the data. The model also predicts that turnover stays roughly constant whereas in the data it

increases.

The key channel through which the model successfully replicate the decreasing equity premium

and increasing market capitalization as in the data is through decreasing informativeness of stock

price. Do we observe that in the data? The literature uses firm-specific return variation as a proxy

for informativeness of stock price (Roll (1988); Durnev et al. (2003)). One measure of firm-specific

return variation is stock market synchronizability (Morck et al. (1999)). Here I compute average

10For simplicity here I do an exercise of comparing across steady states associated with different informa-
tion cost. It is certainly more desirable to do a full-blown quantitative exercise and solve for a transition path
where agents take into account the fact that the information cost is dropping. I left this to future research.
Yet the result presented here should be informative of what to expect in the full-blown quantitative exercise.
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stock return correlation with market return as a measure of stock market synchronizability. A

higher stock return correlation implies higher stock market synchronizability. This in turn implies

lower firm-specific return variation and hence lower informativeness of stock price. Figure 10 depicts

average stock return correlation of individual stocks in SP500 with the index return. Consistent with

the finding in Morck et al. (1999), prior to 1990s stock return correlation was decreasing. After

the mid-1990s, however, the decreasing trend was muted and finally reverted and stock return

correlation started to increase. This provides some direct evidence that stock price did become less

informative after the 1990s.
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Figure 10: Stock price informativeness (proxied by stock return correlation) decreased since
mid-1990s

7 Robustness

7.1 Model Assumptions

In the baseline model, I assume that the noise supply shock follows an i.i.d. process; fundamental

is time-invariant; and uninformed agents are born without observing past prices and dividends. All

the assumptions are made to keep the analysis simple. Neither of these results is essential. To make
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the point in a unified framework, in appendix A I describe an economy with random walk noisy

supply, mean-reverting fundamental, and uninformed agents endowed with information about the

history. I solve the model numerically and show that multiplicity remains in that framework.

Noise supply shock Avdis (2014) shows that when the noise supply follows a mean-reverting

process, there exists multiplicity. Moreover, there is no multiplicity when the noise supply shock

follows a random walk. Similarly, Zhang (2012) only considers i.i.d. noise supply. Unlike Avdis

(2014) and Zhang (2012), the structure of noise supply does not alter the multiplicity result in this

paper. In particular, multiplicity result holds when I replace the assumption of i.i.d noise supply

with random walk supply 11. The key difference, is that there is interim dividend payout in my

model, which naturally introduces additional loading on fundamental into the stock payoff, making

stock payoff more sensitive to fundamental than current stock price. As variance of stock payoff and

stock price are convex functions of the loading coefficients, complementarity (which works through

stock payoff) may dominate substitutability (which works through current stock price).

Stochastic fundamental In the main analysis, fundamental θ is assumed to be time-invariant, i.e.

fundamental is extremely persistent. If fundamental is i.i.d., then there is no multiplicity because

acquiring information today is not helpful in predicting future price, which is only a function of

future fundamental. The magnitude of persistence, however, does not seem to affect the main

result. For instance, in appendix A, I set the persistence of fundamental to be as low as 0.1 and

show that there still exists multiplicity.

Information structure That uninformed agents observe nothing about history is a strong as-

sumption. In fact, the literature that studies infinite-horizon models with information asymmetry

typically assumes that uninformed agents observe the past realization of dividends and prices to in-

fer the value of current fundamental (Wang (1993, 1994); Spiegel (1998); Watanabe (2008), among

others). Does the multiplicity result follows from the perhaps strong assumption that uninformed

agents observe nothing about history? The answer is no. To illustrate, I deliberately endow unin-

11One can apply almost the same technique as in the paper to solve for a model with random walk noise
supply. The only problem is, now the noise supply shock is a random walk, aggregate stock supply is a
nonstationary process and does not have a well-defined unconditional variance. Therefore what one need to
do is to follow Watanabe (2008) and assumes that agents observe the last period aggregate supply of stocks.
Results are available upon request.
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formed agents with much better knowledge of history than what the literature typically assumes.

In particular, I assume that uninformed agents know perfectly the past realizations of fundamental.

7.2 High volatility equilibria

So far we have only considered low-volatility equilibria and show that (theorem 1) there exists some

level of information cost χ such that multiple low-volatility steady states exist. This multiplicity

result carries over to high-volatility equilibria. To show this, first define the class of high-volatility

exogenous-information steady state:

Definition 7.1 A high-volatility exogenous-information steady state ΦH(λ) given λ is

{P (s), λ, {si(s), bi(s}i=U,I} such that

1. It is an exogenous-information steady state. In particular, there exists {A,B,C} such that

P (s) = A+Bθ(s) + Cx(s).

2.

C =
R+
√
R2−4α2σ2

x(σ2
ε+σ2

θ)

2ασ2
x

if λ = 0

C =
λ(B+1)/B+

√
[λ(B+1)/B]2−4α2σ2

xσ
2
ε

2ασ2
x

if λ ∈ (0, 1]

Note that now C is the positive root to a quadratic equation. Now one can define steady-state

value of acquiring information at high-volatility equilibria:

Definition 7.2 Given ΦH(λ), denote the expected utility of the informed W I,H and uninformed

WU,H . Define:

πH(λ) = WU,H/W I,H

Where W i,H , i = I, U are given by:

W i,H =
∫
θ,xW

i,H(P (θ, x))df(θ, x)

W i,H(P ) = maxe,b,c(θ,ε′,x′)
∫
θ,ε′,x′ U(c(θ, ε′, x′))dh(θ, ε′, x′|Ii)

eP + b ≤ w

c(θ, ε′, x′) ≤ (D(θ, ε′) + P (θ, x′)e+Rb)
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Where IU = {P}, II = {P, θ}.

Lemma 7.1 Under some regularity conditions,

∂πH(λ)

∂λ
> 0,

for λ sufficiently small.

Proof. The proof closely mirrors the prove of lemma 4.3. There is a slight change of the regularity

condition B.16. In particular, instead of plugging in C =
r−
√
r2−4α2σ2

xσ
2
ε

2ασ2
x

into the condition, plug

in C =
r+
√
r2−4α2σ2

xσ
2
ε

2ασ2
x

.

Theorem 3 Under some regularity condition, there exists χ such that multiple steady states exist.

Proof. Identical to the proof of theorem 1 given lemma 7.1.

To illustrate, I plot πH(λ) together with π(λ). A common feature is that both curves are upward

sloping when λ is sufficiently small. Thus there exist a level of information cost χ such that multiple

steady states exist.
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Figure 11: Value of information at high-volatility steady sate πH(λ)

What are the stability of different high-volatility steady states? One can numerically verify that

the middle steady states is stable whereas the other two boundary steady states are saddle-path

stable (i.e. there exists a single-dimension stable manifold around the steady state).

8 Conclusion

In a dynamic environment information acquisitions are not only static substitutes, but also dynamic

complements. In this paper I study the dynamic complementarity in information acquisition in an

overlapping-generation noisy rational expectation model with endogenous information acquisition.

In this environment multiple steady states arise associated with different fraction of informed in-

vestors. The crucial step of the proof is to show that the value of acquiring information increases

with the mass of the informed when there are few or no informed agents. The multiplicity makes the

economy susceptible to belief shocks, potentially leading to huge and persistent spike of uncertainty.
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Generally three steady states exist and only the middle steady state is stable. At the middle

steady state strategic complementarity dominates substitutability, thus the net effect is that the

gain from acquiring information increases with the mass of informed.This implies that Grossman

and Stiglitz (1980)’s substitutability result may not be robust to an extension to the dynamic

environment. As the model admits a unique stable steady state, there are sharp and interesting

long-run implications. In particular, it yields comparative statics results in sharp contrast to

that of a static model(Grossman and Stiglitz (1980)), due to the (locally) increasing value of

information. I numerically solve for nonstationary equilibria and illustrate that the transition can

be used to understand the recent growth of index-related investing (e.g. ETFs). The transition

also qualitatively matches several recent trends in equity premium, market capitalization and stock

price correlation.

There are a couple of extensions of the model that one may consider. The overlapping genera-

tion framework is desirable as it kills heterogeneity across agents. With CARA preference wealth

heterogeneity does not matter a lot but information heterogeneity may as the conditional vari-

ance enters into agents’ asset demand. Thus it is challenging to consider information choice with

infinitely-lived agents. As an intermediate step it might be interesting to consider generalized

overlapping-generation structures where agents live for more than two periods. We leave it to

future research.
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A Appendix: An economy with mean-reverting funda-

mental, random walk noise supply, and uninformed

observing the history

In this section I present a model that relaxes a number of assumptions in the baseline model. I show
that in such an environment, multiplicity remains. Unfortunately, the model is hard to characterize
theoretically due to its complexity. Therefore I comply with the literature and solve for the steady
states numerically.

Time is discrete and runs from negative infinity to positive infinity. As in the baseline model, there
is a single consumption goods that agents treat as numeraire. There are two assets. The bond is
in perfect elastic supply and the stock pays out dividends every period:

Dt = θt + εt

, where εt ∼ N (0, σ2
ε).

θt follows:
θt+1 = ρθt + εθt

where εθt ∼ N (0, σ2
θ). I follow Watanabe (2008) and Spiegel (1998) and assume that the aggregate

supply of stock follows a random walk process:

Nt = Nt−1 + ηt

One interpretation is that every period there are noise traders that demand random amount of stock
ηt. There are overlapping-generations of investors who acquires information and trade. Specifically,
in period t:

1. εt is realized. Dividend Dt = θt + εt is paid.

2. εθt is realized. Fundamental θt+1 = ρθt + εθt is also realized.

3. Generation-t agents are born. They are endowed with w units of bonds, CARA utility, and
information set {Dt} ∪ {θt−j , Nt−j}j=1

∞

4. Generation-t agents choose whether to acquire information. At cost χ, they also observe
{θt, εθt}

5. Market opens, generation-t, t− 1 agents and the noise traders trade on the financial market.
Everyone observes price Pt.

6. Generation t− 1 agents exit and consume their wealth.

Note that in the model, fundamental is stochastic and noise supply follows random walk. Unin-
formed agents are allowed to observe historical realizations of θt. Given the concern that the main
result in the baseline model may be driven by the perhaps strong assumption that uninformed
agents observe nothing about the history, here I deliberately endow them with much better knowl-
edge of the history than what the literature typically assumes. The usual assumption made in the
literature is that agents observe dividends and prices to infer historical realizations of fundamental.
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Here I endow the uninformed agents more information by letting them know the true historical
realizations of fundamental.

As in the baseline model, each generation of agents make two choices sequentially. First, they make
their information acquisition choice:

Vt = max{V I
t , V

U
t }

Where V I
t denotes expected utility for agents acquiring information (later I call them informed

agents); V U
t denotes expected utility for agents not acquiring information (later I call them unin-

formed agents). V I
t and V U

t are determined by agents’ portfolio choice:

V i
t =

∫
P V

i
t (P )dFt(P )

V i
t (P ) = maxet,bt,c(Pt+1,θt+1,εt+1)

∫
Pt+1,θt+1,εt+1

U(c(Pt+1, θt, εt+1))dHt(Pt+1, θt+1, εt+1|Iit)
etPt + bt ≤ w−1{i = I}χ

c(Pt+1, θ, ε
′) ≤ (D(θt+1, εt+1) + Pt+1)e+Rbt

Where IUt = {Pt, Dt} ∪ {θt−j , Nt−j}j=1
∞ , IIt = {θt, εθt} ∪ IUt , U(c) = − exp(−αc), α is the risk averse

parameter. D(θt+1, εt+1) = θt+1 + εt+1, Ft, Ht are equilibrium objects as price is determined in
general equilibrium.

I take a guess and verify strategy and conjecture that the equilibrium price function takes the form:

Pt = a+ b1θt + b2θt−1 + b3ε
θ
t + cDt + dηt + eNt−1

Where a, b1, b2, b3, c, d, e are scalars. Thus one can define a steady state in this environment:

Definition A.1 Denote s = {θt, θt−1, ε
θ
t , ηt, Nt−1}, A steady state is {P (s), λ, {si(s), bi(s)}i=U,I}

s.t:

1. ei(s), bi(s) solves uninformed and informed agents’ problem given P (s).

2. Market clears: λeI(s) + (1− λ)eU (s) = Nt−1 + ηt,∀st, t .

3. VU = VI if λ ∈ (0, 1); if λ = 0, VU ≥ VI ; if λ = 1, VU ≤ VI

Where VU and VI solves the uninformed and informed agents’ problem respectively. The individual
agents’ problems are analogous to that stated previously.

To solve for steady state, I take the approach described in section 4.1 and solve for the value of
information π(λ) for each λ. I set the persistence parameter ρ to be as low as 0.1 to show that the
multiplicity result is not sensitive to the choice of persistence parameter ρ. Figure 12 displays the
result.

The intuition is that more informed agents tomorrow increases the predictive power of εθt . To see
this, note that tomorrow’s informed agents know perfectly the value of θt+1 whereas uninformed
agents only observes some noisy signal to infer the value of θt+1. Thus, when there are more
informed agents tomorrow, tomorrow’s price Pt+1 will be more heavily loaded on θt+1, and thus on
εθt . This increase agents’ incentive to learn εθt today.
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Figure 12: Value of information in the extended model: π(λ)

B Appendix: Proofs

Useful Result:

Proposition B.1 At exogenous-information steady state φ(λ), the value of information

π(λ) =
WU

W I
=

√
V ar(P (s′) +D(s′)|P )

V ar(P (s′) +D(s′)|P, θ)

Proof. This is an extension of the Theorem 2 in Grossman and Stiglitz (1980). It states that the
value of information, defined as ratio of expected utility for the uninformed and informed, is the
relative stock payoff uncertainty of the uninformed and informed agents. Note that P (s′) denotes
next period equilibrium price whereas P denotes current price.

Suppose equilibrium price P (s) = A + Bθ(s) + Cx(s). Simplify the budget constraint: c(s′) =
(D(s′) +P ′(s′)−RP )e. Plug into utility function, we obtain that the expected utility of each type
of agents after market opens:

W i(P ) = max
e

∫
s′
U((D(s′) + P ′(s′)−RP )e)dH(s′|Ii)
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Given CARA utility:

W i(P ) = maxe
∫
s′ U((D(s′) + P ′(s′)−RP )e)dH(s′|Ii)

= maxe
∫
s′ −e

(−α((D(s′)+P ′(s′)−RP )e))dH(s′|Ii)
= maxe− exp[E[−α((D(s′) + P ′(s′)−RP )e)|Ii] + 1

2V ar(−α((D(s′) + P ′(s′)−RP )e)|Ii)]
= maxe− exp[−α(E[D(s′) + P ′(s′)−RP |Ii]e− 1

2αe
2V ar(D(s′) + P ′(s′)−RP |Ii))]

(B.1)
hence maximizing over the objective function is equivalent to maximizing:

max
e
E[D(s′) + P ′(s′)−RP |Ii]e− 1

2
αe2V ar(D(s′) + P ′(s′)−RP |Ii)

Solve for optimal s∗:

e∗ =
E[D(s′) + P ′(s′)−RP |Ii]

αV ar(D(s′) + P ′(s′)−RP |Ii)
Plug back to the original objective function:

W i(P ) = − exp[−1
2α

(E[D(s′)+P ′(s′)−RP |Ii])2
αV ar(D(s′)+P ′(s′)−RP |Ii) ]

= − exp[−1
2

(E[D(s′)+P ′(s′)|Ii]−RP )2

V ar(D(s′)+P ′(s′)|Ii) ]
(B.2)

Where the second equation follows because P is realized at this stage. Let:

h = V ar(D(s′) + P ′(s′)|IU )− V ar(D(s′) + P ′(s′)|II) > 0

The reason why it is greater than 0 is that uninformed has residual uncertainty over θ whereas the
informed are perfectly informed about θ. Taking conditional expectation of the informed WI(P ) of
the uninformed agents’ information set:

E[W i(P )|IU ] = E[−e−
1
2

(E[D(s′)+P ′(s′)|II ]−RP )2

V ar(D(s′)+P ′(s′)|II ) |IU ]

= E[−e−
1
2

(E[D(s′)+P ′(s′)|II ]−RP )2

h
h

V ar(D(s′)+P ′(s′)|II ) |IU ]

= E[−e−
1
2

h

V ar(D(s′)+P ′(s′)|II )
z2 |IU ]

(B.3)

Where z = (E[D(s′)+P ′(s′)|II ]−RP )√
h

.

Thus by moment generating function of a non-central chi-squared distribution (formula A21 of
Grossman and Stiglitz (1980)):

E[W i(P )|IU ] = 1√
1+ h

V ar(D(s′)+P ′(s′)|II )

exp(
−E[z|IU ]2 1

2
h

V ar(D(s′)+P ′(s′)|II )

1+ h

V ar(D(s′)+P ′(s′)|II )
)

=
√

V ar(D(s′)+P ′(s′)|II)
V ar(D(s′)+P ′(s′)|IU )

exp(
−E[z|IU ]2 1

2
h

V ar(D(s′)+P ′(s′)|Ii)

1+ h

V ar(D(s′)+P ′(s′)|Ii)
)

=
√

V ar(D(s′)+P ′(s′)|II)
V ar(D(s′)+P ′(s′)|IU )

exp(
− 1

2
(E[D(s′)+P ′(s′)|IU ]−RP )2

V ar(D(s′)+P ′(s′)|IU )
)

=
√

V ar(D(s′)+P ′(s′)|II)
V ar(D(s′)+P ′(s′)|IU )

WU (P )

(B.4)
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Integrate on both sides with respect to current state s, one get:

WI =
√

V ar(D(s′)+P ′(s′)|II)
V ar(D(s′)+P ′(s′)|IU )

WU (B.5)

As II = {P, θ}, IU = {P},

π(λ) =
WU

WI
=

√
V ar(D(s′) + P (s′)|P )

V ar(D(s′) + P (s′)|P, θ)

Proof of lemma 4.1

It suffices to show that coefficients B,C of the price function exist when λ is sufficiently small, as
all the other objects can be easily constructed. As shown in lemma 4.3, the coefficients satisfies the
following system of equation: [

B
C

]
−
[

1
Rλ (B + 1)L

1
Rα
[
C2σ2

x + σ2
ε

]
L

]
= 0

Where functon L is defined below. When λ→ 0, L→ 1+
(B+1)2σ2

θ
C2σ2

x+σ2
ε
> 0, thus the system of equation

converge to: [
B
C

]
−

[
0

1
Rα
[
C2σ2

x + σ2
ε

]
[1 +

(B+1)2σ2
θ

C2σ2
x+σ2

ε
]

]
= 0

Thus
B → 0

C → R−
√

[R]2−4α2σ2
x(σ2

ε+σ2
θ)

2ασ2
x

Thus under assumption 1, B,C are well defined for λ sufficiently small.

Proof of lemma 4.3

Period t investors’ portfolio choice problem is given by:

max
e
E [U (e (Dt+1 + Pt+1 −RPt)) |I]

Where I denotes his information set.

Given CARA utility function, this is equivalent to maximizing:

max
e
E [(Dt+1 + Pt+1 −RPt) |I] e− 1

α
e2V ar [Dt+1 + Pt+1 −RPt|I]
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Hence agents demand functions are given by:

e∗t =
E [(Dt+1 + Pt+1 −RPt) |I]

αV ar [Dt+1 + pt+1 −RPt|I]
=
E [(Dt+1 + Pt+1) |I]−RPt
αV ar [Dt+1 + pt+1|I]

Write out explicitly the formula for tomorrow’s dividend and stock price:

Dt+1 + Pt+1 = θ + εt+1 +At+1 +Bt+1θ + Ct+1xt+1

= At+1 + (Bt+1 + 1) θ + εt+1 + Ct+1xt+1

We first look for demand for the informed agents etI . Given his information set II = {Pt, θ}, the
conditional mean and variance of stock payoff Pt+1 +Dt+1 is given by:

E
[
(Dt+1 + Pt+1) |II

]
= At+1 + (Bt+1 + 1) θ

V ar
[
(Dt+1 + Pt+1) |II

]
= σ2

ε + C2
t+1σ

2
x

Plug in the formula into informed demand, we get:

etI =
At+1 + (Bt+1 + 1) θ −RPt

α
[
σ2
ε + C2

t+1σ
2
x

]
From the market clearing condition:

λtetI + (1− λt) etU + xt = 1

Plug in

etI =
At+1 + (Bt+1 + 1) θ −RPt

α
[
σ2
ε + C2

t+1σ
2
x

]
we get

λt
At+1 + (Bt+1 + 1) θ −RPt

α
[
σ2
ε + C2

t+1σ
2
x

] + (1− λt) etU + xt = 1

Rearrange

λt (Bt+1 + 1) θ+α
[
σ2
ε + C2

t+1σ
2
x

]
xt = α

[
σ2
ε + C2

t+1σ
2
x

]
−α

[
σ2
ε + C2

t+1σ
2
x

]
(1− λt) etU−λt (At+1 +RPt)

uninformed agents understands the structure of the equilibrium, thus he knows λt and stU . They
also observe Pt. Thus knowing Pt is equivalent to knowing the right hand side of the equation,
equivalent to knowing the left hand side of the equation, which serves as a noisy signal of θ, s (Pt) :

s (Pt) = λt (Bt+1 + 1) θ + α
[
σ2
ε + C2

t+1σ
2
x

]
xt

Given this signal, uninformed agents do Bayesian updating as follows. Random variable Dt+1+Pt+1
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and s (Pt) are jointly normal with the following mean and variance matrix:

[
Dt+1 + Pt+1

s (Pt)
] = [

At+1 + (Bt+1 + 1) θ + εt+1 + Ct+1xt+1

λt (Bt+1 + 1) θ + α
[
σ2
ε + C2

t+1σ
2
x

]
xt

]

∼ N
(
µU ,ΣU

)
Where:

µU =

[
At+1 + (Bt+1 + 1)µ
λt (Bt+1 + 1)µ

]
ΣU =

[
(Bt+1 + 1)2 σ2

θ + σ2
ε + C2

t+1σ
2
x λt [Bt+1 + 1]2 σ2

θ

λt [Bt+1 + 1]2 σ2
θ λ2

t (Bt+1 + 1)2 σ2
θ + α2

[
σ2
ε + C2

t+1σ
2
x

]2
σ2
x

]

Thus from conditional expectation formula for normal variables, the conditional mean of Pt+1+Dt+1

is given by:

E [Dt+1 + Pt+1|Pt] = At+1 + (Bt+1 + 1)µ+MU
[
λt (Bt+1 + 1) θ + α

[
σ2
ε + C2

t+1σ
2
x

]
xt
]

(B.6)

Where MU =
λt[Bt+1+1]2σ2

θ

λ2t (Bt+1+1)2σ2
θ+α2[σ2

ε+C2
t+1σ

2
x]

2
σ2
x

The conditional variance of Pt+1 +Dt+1 is given by:

V ar [Dt+1 + Pt+1|Pt] = (Bt+1 + 1)2 σ2
θ + σ2

ε + C2
t+1σ

2
x −

[
λt [Bt+1 + 1]2 σ2

θ

]2

λ2
t (Bt+1 + 1)2 σ2

θ + α2
[
σ2
ε + C2

t+1σ
2
x

]2
σ2
x

(B.7)

Thus we get the demand of the uninformed:

stU =
E [Dt+1 + Pt+1|Pt]−RPt
αV ar [Dt+1 + Pt+1|Pt]

Plug the demand functions into the market clearing condition:

λt
At+1 + (Bt+1 + 1) θ −RPt

α
[
σ2
ε + C2

t+1σ
2
x

] + (1− λt)
E [Dt+1 + Pt+1|Pt]−RPt
αV ar [Dt+1 + Pt+1|Pt]

+ xt = 1

Where E [Dt+1 + Pt+1|Pt] and V ar [Dt+1 + Pt+1|Pt] are given by B.6 and B.7 respectively. Rear-
range this expression, we get a linear expression for price functin Pt:

Pt = At +Btθ + Ctxt
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Where

At = v−1

[
λt

At+1

α
[
σ2
ε + C2

t+1σ
2
x

] + (1− λt)
At+1 + (Bt+1 + 1)µ

αV I
t

− 1

]
(B.8)

Bt = v−1

[
λt

(Bt+1 + 1)

α
[
σ2
ε + C2

t+1σ
2
x

] + (1− λt)
MU [λt (Bt+1 + 1)]

αV I
t

]
(B.9)

Ct = v−1

[
(1− λt)

MU
[
α
[
σ2
ε + C2

t+1σ
2
x

]]
αV I

t

+ 1

]
(B.10)

Where:

V U
t = (Bt+1 + 1)2 σ2

θ + σ2
ε + C2

t+1σ
2
x −

[
λt [Bt+1 + 1]2 σ2

θ

]2

λ2
t (Bt+1 + 1)2 σ2

θ + α2
[
σ2
ε + C2

t+1σ
2
x

]2
σ2
x

MU
t =

λt [Bt+1 + 1]2 σ2
θ

λ2
t (Bt+1 + 1)2 σ2

θ + α2
[
σ2
ε + C2

t+1σ
2
x

]2
σ2
x

v = R

(
λt

α
[
σ2
ε + C2

t+1σ
2
x

] +
(1− λt)
αV I

t

)

Define the relative uncertainty of uninformed and informed:

Xt =
V ar(Pt+1 +Dt+1|Pt)
V ar(Pt+1 +Dt+1|Pt, θ)

=

(Bt+1 + 1)2 σ2
θ + σ2

ε + C2
t+1σ

2
x −

[λt[Bt+1+1]2σ2
θ]

2

λ2t (Bt+1+1)2σ2
θ+α2[σ2

ε+C2
t+1σ

2
x]

2
σ2
x[

σ2
ε + C2

t+1σ
2
x

]
=

σ2
ε + C2

t+1σ
2
x +

[
1− λ2t [Bt+1+1]2σ2

θ

λ2t (Bt+1+1)2σ2
θ+α2[σ2

ε+C2
t+1σ

2
x]

2
σ2
x

]
(Bt+1 + 1)2 σ2

θ[
σ2
ε + C2

t+1σ
2
x

]
=

σ2
ε + C2

t+1σ
2
x +

[
α2[σ2

ε+C2
t+1σ

2
x]

2
σ2
x

λ2t (Bt+1+1)2σ2
θ+α2[σ2

ε+C2
t+1σ

2
x]

2
σ2
x

]
(Bt+1 + 1)2 σ2

θ[
σ2
ε + C2

t+1σ
2
x

]
= 1 +

α2
[
σ2
ε + C2

t+1σ
2
x

]
σ2
x

λ2
t (Bt+1 + 1)2 σ2

θ + α2
[
σ2
ε + C2

t+1σ
2
x

]2
σ2
x

(Bt+1 + 1)2 σ2
θ

Plug V U
t = Xt

[
σ2
ε + C2

t+1σ
2
x

]
into B.9 and B.10, rearrange, one can get:

[
Bt
Ct

]
=

 1
Rλt (Bt+1 + 1)

[Xt+(1−λt)MU
t ]

(λtXt+(1−λt))
1
Rα
[
C2
t+1σ

2
x + σ2

ε

] [(1−λt)MU
t +Xt]

(λtXt+(1−λt))



48



Define Lt =
[Xt+(1−λt)MU

t ]
(λtXt+(1−λt)) . Then the transition function is given by:[

Bt
Ct

]
−
[

1
Rλt (Bt+1 + 1)Lt

1
Rα
[
C2
t+1σ

2
x + σ2

ε

]
Lt

]
= 0

Where

Lt =

[
Xt + (1− λt)MU

t

]
(λtXt + (1− λt))

Xt = 1 +
α2
[
σ2
ε + C2

t+1σ
2
x

]
σ2
x

λ2
t (Bt+1 + 1)2 σ2

θ + α2
[
σ2
ε + C2

t+1σ
2
x

]2
σ2
x

(Bt+1 + 1)2 σ2
θ

MU
t =

λt [Bt+1 + 1]2 σ2
θ

λ2
t (Bt+1 + 1)2 σ2

θ + α2
[
σ2
ε + C2

t+1σ
2
x

]2
σ2
x

Next we turn to steady state. At steady state, we can get rid of the t subscripts. Thus we arrive
at an expression for the value of information:

π (λ) =
WU

W I
(B.11)

=

√
V U

V I
(B.12)

=
√
X (λ,B,C) (B.13)

=

√
1 +

α2 [σ2
ε + C2σ2

x]σ2
x

λ2 (B + 1)2 σ2
θ + α2 [σ2

ε + C2σ2
x]2 σ2

x

(B + 1)2 σ2
θ (B.14)

(The first equality follows from definition. The second equality follows from proposition B.1. The
third equality is by definition of function X. )

Subject to: [
B
C

]
=

[
1
Rλ (B + 1)L(B,C, λ)

1
Rα
[
C2σ2

x + σ2
ε

]
L(B,C, λ)

]
(B.15)

Where

L(B,C, λ) =

[
X(B,C, λ) + (1− λt)MU (B,C, λ)

]
(λX(B,C, λ) + (1− λ))

X(B,C, λ) = 1 +
α2
[
σ2
ε + C2σ2

x

]
σ2
x

λ2
t (B + 1)2 σ2

θ + α2 [σ2
ε + C2σ2

x]2 σ2
x

(B + 1)2 σ2
θ

MU (B,C, λ) =
λ [B + 1]2 σ2

θ

λ2 (B + 1)2 σ2
θ + α2 [σ2

ε + C2σ2
x]2 σ2

x

Essentially, the constraints B.15 define a set of implicite function B(λ), C(λ).

Thus

π′ (λ) =
1

2
X−

1
2 (Xλ +XBBλ +XCCλ)
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Where Bλ, Cλ are total differentiation of the constraint:[
B
C

]
−
[

1
Rλ (B + 1)L(B,C, λ)

1
Rα
[
C2σ2

x + σ2
ε

]
L(B,C, λ)

]
= 0

Define G (λ,B,C) = RB−λ (B + 1)L(B,C, λ);H (λ,B,C) = RC−α
[
C2σ2

x + σ2
ε

]
L(B,C, λ), Then

the following must hold:

G (λ,B,C) = 0

H (λ,B,C) = 0

Total differentiation: [
GB GC
HB HC

] [
Bλ
Cλ

]
= −

[
Gλ
Hλ

]
[
R− λL− λ (B + 1)LB −λ (B + 1)LC
−α

[
C2σ2

x + σ2
ε

]
LB R− 2αCσ2

xL− α
[
C2σx + σε

]
LC

] [
Bλ
Cλ

]
= −

[
− (B + 1)L− λ (B + 1)Lλ
−α

[
C2σ2

x + σ2
ε

]
Lλ

]
[
Bλ
Cλ

]
=

[
R− λL− λ (B + 1)LB −λ (B + 1)LC
−α

[
C2σ2

x + σ2
ε

]
LB R− 2αCσ2

xL− α
[
C2σx + σε

]
LC

]−1 [
(B + 1)L+ λ (B + 1)Lλ

α
[
C2σ2

x + σ2
ε

]
Lλ

]
Now we need to check the value of each term when λ = 0

X =
(B + 1)2 σ2

θα
2V Iσ2

x

λ2 (B + 1)2 σ2
θ + α2 (C2σ2

x + σ2
ε)

2 σ2
x

+ 1 =
σ2
θ

C2σ2
x + σ2

ε

+ 1

∂X

∂B
=

(B + 1)2 σ2
θα

2V Iσ2
xα

2
(
C2σ2

x + σ2
ε

)2
σ2
x[

λ2 (B + 1)2 σ2
θ + α2 (C2σ2

x + σ2
ε)

2 σ2
x

]2 =
σ2
θ

(C2σ2
x + σ2

ε)

∂X

∂C
=

(B + 1)2 σ2
θα

2σ2
x

[
λ2 (B + 1)2 σ2

θ − α2
(
C2σ2

x + σ2
ε

)2
σ2
x

]
2Cσ2

x[
λ2 (B + 1)2 σ2

θ + α2 (C2σ2
x + σ2

ε)
2 σ2

x

]2 = −
σ2
θσ

2
x2C

(C2σ2
x + σ2

ε)
2

∂X

∂λ
=

− (B + 1)2 σ2
θα

2V Iσx2λ (B + 1)2 σ2
θ[

λ2 (B + 1)2 σ2
θ + α2 (C2σ2

x + σ2
ε)

2 σ2
x

]2 = 0
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MU =
λ (B + 1)2 σ2

θ

λ2 (B + 1)2 σ2
θ + α2 (C2σ2

x + σ2
ε)

2 σ2
x

= 0

∂MU

∂B
=

2λ (B + 1)σ2
θα

2
(
C2σ2

x + σ2
ε

)2
σx[

λ2 (B + 1)2 σ2
θ + α2 (C2σ2

x + σ2
ε)

2 σ2
x

]2 = 0

∂MU

∂C
= −

λ (B + 1)2 σ2
θ[

λ2 (B + 1)2 σ2
θ + α2 (C2σ2

x + σ2
ε)

2 σ2
x

]2 2α2
(
C2σ2

x + σ2
ε

)
σ2
x2Cσ2

x = 0

∂MU

∂λ
=

(B + 1)2 σ2
θ

[
λ2 (B + 1)2 σ2

θ + α2
(
C2σ2

x + σ2
ε

)2
σ2
x

]
− λ (B + 1)2 σ2

θ

[
2λ (B + 1)2 σ2

θ

]
[
λ2 (B + 1)2 σ2

θ + α2 (C2σ2
x + σ2

ε)
2 σ2

x

]2

→ 0

Thus:

L =

[
X + (1− λ)MU

]
(λX + (1− λ))

= X +MU =
σ2
θ

C2σ2
x + σ2

ε

+ 1

LB =

[
X + (1− λ)MU

]′
(λX + (1− λ))−

[
X + (1− λ)MU

]
(λX + (1− λ))′

(λX + (1− λ))2

=

[
XB + (1− λ)MU

B

]
(λX + (1− λ))−

[
X + (1− λ)MU

]
(λXB)

(λX + (1− λ))2 =
σ2
θ

C2σ2
x + σ2

ε

LC =

[
X + (1− λ)MU

]′
(λX + (1− λ))−

[
X + (1− λ)MU

]
(λX + (1− λ))′

(λX + (1− λ))2

=

[
XC + (1− λ)MU

C

]
(λX + (1− λ))−

[
X + (1− λ)MU

]
(λXC)

(λX + (1− λ))2 = −
σ2
θσ

2
x

(C2σ2
x + σ2

ε)
2 2C

Lλ =

[
X + (1− λ)MU

]′
(λX + (1− λ))−

[
X + (1− λ)MU

]
(λX + (1− λ))′

(λX + (1− λ))2

=

[
Xλ −MU + (1− λ)MU

λ

]
(λX + (1− λ))−

[
X + (1− λ)MU

]
(X + λXλ − 1)

(λX + (1− λ))2

=
σ2
θ

α2 (C2σ2
x + σ2

ε)
2 σ2

x

−
[
1 +

σ2
θ

C2σ2
x + σ2

ε

](
σ2
θ

C2σ2
x + σ2

ε

)

[
Bλ
Cλ

]
=

[
r − λL− λ (B + 1)LB −λ (B + 1)LC
−α

[
C2σx + σε

]
LB r − 2αCσxL− α

[
C2σx + σε

]
LC

]−1 [
(B + 1)L+ λ (B + 1)Lλ

α
[
C2σx + σε

]
Lλ

]

=

 1
R

(
1 +

σ2
θ

C2σ2
x+σ2

ε

)
ασ2

θ

(
1+

σ2θ
C2σ2x+σ

2
ε

)
+Rασ2

θ

(
1

α2(C2σ2x+σ
2
ε)σx

−1− σ2θ
C2σ2x+σ

2
ε

)
R(R−2αCσ2

x)

 when λ = 0
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Thus

dπ

dλ

∣∣∣∣
λ=0

=
dX (B (λ) , C (λ) , λ)

dλ
=
∂X

∂B

∂B

∂λ
+
∂X

∂C

∂C

∂λ
+
∂X

∂λ

=
σ2
θ

(C2σ2
x + σ2

ε)

1

R

(
1 +

σ2
θ

C2σ2
x + σ2

ε

)

−
σ2
θσ

2
x2C

(C2σ2
x + σ2

ε)
2

ασ2
θ

(
1 +

σ2
θ

C2σ2
x+σ2

ε

)
+Rασ2

θ

(
1

α2(C2σ2
x+σ2

ε)σx
− 1− σ2

θ
C2σ2

x+σ2
ε

)
R (R− 2αCσ2

x)
> 0

Simplify, one get:

1 +
σ2
θ

C2σ2
x + σ2

ε

−
ασ2

θσ
2
x2C

C2σ2
x + σ2

ε

(
1 +

σ2
θ

C2σ2
x+σ2

ε

)
+R

(
1

α2(C2σ2
x+σ2

ε)σx
− 1− σ2

θ
C2σ2

x+σ2
ε

)
(R− 2αCσ2

x)
> 0

In the low volatility economy:

C =

R−
√
R2 − 4α2σ2

x(σ2
ε + σ2

θ)

2ασ2
x



Thus, if

1 +
σ2
θ

C2σ2
x + σ2

ε

−
ασ2

θσ
2
x2C

C2σ2
x + σ2

ε

(
1 +

σ2
θ

C2σ2
x+σ2

ε

)
+R

(
1

α2(C2σ2
x+σ2

ε)σx
− 1− σ2

θ
C2σ2

x+σ2
ε

)
(R− 2αCσ2

x)
> 0 (B.16)

with C =

(
R−
√
R2−4α2σ2

x(σ2
ε+σ2

θ)

2ασ2
x

)
holds, then

dπ

dλ

∣∣∣∣
λ=0

> 0

Proof of theorem 1

The proof follows directly from the continuity of π(λ) intermediate value theorem. π(λ) is differen-
tiable, hence continuous. Given that π′(λ) > 0 for λ sufficiently small, pick χ such that eαχ = π(λ1)
for some λ1 sufficiently small but strictly positive. Then we know that λ1 is a steady state. Also,
we know that π(0) < π(λ1) = eαχ. Thus we know that λ0 = 0 is another steady state as no one
is informed and the gain from acquiring information is less than the cost. Thus we find multiple
steady states.
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Proof of proposition 4.1

By proof of lemma 4.3, The coefficients {A2, B2, C2} on the price function P2 = A2 + B2θ + C2x2

must satisfy:

A2 = v−1

[
λ2

A2

α
[
σ2
ε + C2

2σ
2
x

] + (1− λ2)
A2 + (B2 + 1)µ

αV U
2

− 1

]
(B.17)

B2 = v−1

[
λ2

(B2 + 1)

α
[
σ2
ε + C2

2σ
2
x

] + (1− λ2)
MU

2 [λ2 (B2 + 1)]

αV U
2

]
(B.18)

C2 = v−1

[
(1− λ2)

MU
2

[
α
[
σ2
ε + C2

2σ
2
x

]]
αV U

2

+ 1

]
(B.19)

Where:

V U
2 = (B2 + 1)2 σ2

θ + σ2
ε + C2

2σ
2
x −

[
λ2 [B2 + 1]2 σ2

θ

]2

λ2
2 (B2 + 1)2 σ2

θ + α2
[
σ2
ε + C2

2σ
2
x

]2
σ2
x

MU
2 =

λ2 [B2 + 1]2 σ2
θ

λ2
2 (B2 + 1)2 σ2

θ + α2
[
σ2
ε + C2

2σ
2
x

]2
σ2
x

v = R

(
λ2

α
[
σ2
ε + C2

2σ
2
x

] +
(1− λ2)

αV U
2

)

That is, {A2, B2, C2} are all functions of λ2.

Likewise the coefficients {A1, B1, C1} on the price function P1 = A1 +B1θ + C1x1 must satisfy:

A1 = v−1

[
λ1

A2

α
[
σ2
ε + C2

2σ
2
x

] + (1− λ1)
A2 + (B2 + 1)µ

αV U
1

− 1

]

B1 = v−1

[
λ1

(B2 + 1)

α
[
σ2
ε + C2

2σ
2
x

] + (1− λ2)
MU

1 [λ1 (B2 + 1)]

αV U
1

]

C1 = v−1

[
(1− λ1)

MU
1

[
α
[
σ2
ε + C2

2σ
2
x

]]
αV U

1

+ 1

]

Where:

V U
1 = (B2 + 1)2 σ2

θ + σ2
ε + C2

2σ
2
x −

[
λ1 [B2 + 1]2 σ2

θ

]2

λ2
1 (B2 + 1)2 σ2

θ + α2
[
σ2
ε + C2

2σ
2
x

]2
σ2
x

MU
1 =

λ1 [B2 + 1]2 σ2
θ

λ2
1 (B2 + 1)2 σ2

θ + α2
[
σ2
ε + C2

2σ
2
x

]2
σ2
x

v = R

(
λ1

α
[
σ2
ε + C2

2σ
2
x

] +
(1− λ1)

αV U
1

)
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As {A1, B1, C1} are functions of λ1 as well as {A2, B2, C2}, which are in turn all functions of λ2,
{A1, B1, C1} are functions of both λ1 and λ2.

Given {A1, B1, C1} and {A2, B2, C2}, we can compute the value of information for period-1 agents,
which is:

πd(λ1, λ2) =

√
V ar(D2 + P2|P1)

V ar(D2 + P2|P1, θ)

=

√
1 +

α2
[
σ2
ε + C2(λ2)2σ2

x

]
σ2
x

λ2
1 (B2(λ2) + 1)2 σ2

θ + α2 [σ2
ε + C2(λ2)2σ2

x]2 σ2
x

(B2(λ2) + 1)2 σ2
θ

Where B2(λ2) and C2(λ2) are implicit functions defined by B.21 and B.22. The first equality follows
from lemma 4.2 and the second equality follows from 4.5.

Simplify B.21 and B.22, B2, C2 must satisfy:[
B2

C2

]
=

[
1
Rλ2 (B2 + 1)L(B2, C2, λ2)

1
Rα
[
C2

2σ
2
x + σ2

ε

]
L(B2, C2, λ2)

]
Where

L(B,C, λ) =

[
X(B,C, λ) + (1− λ)MU (B,C, λ

]
(λX(B,C, λ) + (1− λ))

X(B,C, λ) = 1 +
α2
[
σ2
ε + C2σ2

x

]
σ2
x

λ2
t (B + 1)2 σ2

θ + α2 [σ2
ε + C2σ2

x]2 σ2
x

(B + 1)2 σ2
θ

MU (B,C, λ) =
λ [B + 1]2 σ2

θ

λ2 (B + 1)2 σ2
θ + α2 [σ2

ε + C2σ2
x]2 σ2

x

One can take derivatives with respect to λ1:

∂πd
∂λ1

= π−1
d

−α2
[
σ2
ε + C2(λ2)2σ2

x

]
σ2
x

(λ2
1 (B2(λ2) + 1)2 σ2

θ + α2 [σ2
ε + C2(λ2)2σ2

x]2 σ2
x)2

((B2(λ2) + 1)2 σ2
θ)

2λ1

Thus when λ1 = 0, ∂πd∂λ1
= 0.

To examine the derivative of ∂πd
∂λ2

, one can perform a similar total differentiation task as in the

proof of lemma 4.3 and easily verify that if B.16 holds, then ∂πd
∂λ2

> 0. The proof is available upon
request.

Proof of lemma 4.2

The proof of the lemma closely mirrors the proof of proposition B.1, hence is omitted here.
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Proof of lemma 4.5

By proof of lemma 4.3, The coefficients {A2, B2, C2} on the price function P2 = A2 + B2θ + C2x2

must satisfy:

A2 = v−1

[
λ2

A2

α
[
σ2
ε + C2

2σ
2
x

] + (1− λ2)
A2 + (B2 + 1)µ

αV U
2

− 1

]
(B.20)

B2 = v−1

[
λ2

(B2 + 1)

α
[
σ2
ε + C2

2σ
2
x

] + (1− λ2)
MU

2 [λ2 (B2 + 1)]

αV U
2

]
(B.21)

C2 = v−1

[
(1− λ2)

MU
2

[
α
[
σ2
ε + C2

2σ
2
x

]]
αV U

2

+ 1

]
(B.22)

Where:

V U
2 = (B2 + 1)2 σ2

θ + σ2
ε + C2

2σ
2
x −

[
λ2 [B2 + 1]2 σ2

θ

]2

λ2
2 (B2 + 1)2 σ2

θ + α2
[
σ2
ε + C2

2σ
2
x

]2
σ2
x

MU
2 =

λ2 [B2 + 1]2 σ2
θ

λ2
2 (B2 + 1)2 σ2

θ + α2
[
σ2
ε + C2

2σ
2
x

]2
σ2
x

v = R

(
λ2

α
[
σ2
ε + C2

2σ
2
x

] +
(1− λ2)

αV U
2

)

That is, {A2, B2, C2} are all functions of λ2.

Likewise the coefficients {A1, B1, C1} on the price function P1 = A1 +B1θ + C1x1 must satisfy:

A1 = v−1

[
λ1

A2

α
[
σ2
ε + C2

2σ
2
x

] + (1− λ1)
A2 + (B2 + 1)µ

αV U
1

− 1

]

B1 = v−1

[
λ1

(B2 + 1)

α
[
σ2
ε + C2

2σ
2
x

] + (1− λ2)
MU

1 [λ1 (B2 + 1)]

αV U
1

]

C1 = v−1

[
(1− λ1)

MU
1

[
α
[
σ2
ε + C2

2σ
2
x

]]
αV U

1

+ 1

]

Where:

V U
1 = (B2 + 1)2 σ2

θ + σ2
ε + C2

2σ
2
x −

[
λ1 [B2 + 1]2 σ2

θ

]2

λ2
1 (B2 + 1)2 σ2

θ + α2
[
σ2
ε + C2

2σ
2
x

]2
σ2
x

MU
1 =

λ1 [B2 + 1]2 σ2
θ

λ2
1 (B2 + 1)2 σ2

θ + α2
[
σ2
ε + C2

2σ
2
x

]2
σ2
x

v = R

(
λ1

α
[
σ2
ε + C2

2σ
2
x

] +
(1− λ1)

αV U
1

)
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As {A1, B1, C1} are functions of λ1 as well as {A2, B2, C2}, which are in turn all functions of λ2,
{A1, B1, C1} are functions of both λ1 and λ2.

To ease notation, below I omit the dependence of coefficients on λ1 and λ2.

Then
D2 + P2 = θ + ε′ +A2 +B2θ + C2x

′

= A2 + (B2 + 1)θ + ε′ + C2x
′

Informed investors know perfectly the value of θ, hence:

V ar(D2 + P2|P1, θ) = C2
2σ

2
x + σ2

ε

Now turn to the uncertainty faced by the uninformed: V ar(D2 + P2|P1) Given that P1 = A1 +
B1θ + C1x1 is a normally distributed noisy signal about θ, we can apply updating formula for
normal variables:

V ar(D2 + P2|P1) = V ar(D2 + P2)− [Cov(D2+P2,P1)]2

V ar(P1)

= (B2 + 1)2σ2
θ + C2

2σ
2
x + σ2

ε −
(B1(B2+1)σ2

θ)2

B2
1σ

2
θ+C2

1σ
2
x

= (B2 + 1)2σ2
θ + C2σ2

x + σ2
ε − Ω(λ1, λ2)(B + 1)2σ2

θ

Where Ω(λ1, λ2) =
B1(λ1, λ2)2σ2

θ

B1(λ1, λ2)2σ2
θ + C1(λ1, λ2)2σ2

x

.

Proof of lemma 5.1

From the proof of lemma 4.3, there is a set of equation (B.9 and B.10) that {Bt, Ct, λt, Bt+1, Ct+1}
must satisfy. Denote it:

(Bt, Ct) = Υ(λt, Bt+1, Ct+1) (B.23)

It sufficies to show that when information choice is endogenous, there exist a function F1 such that:

λt = F1(Bt+1, Ct+1) (B.24)

Plug this back into B.23, we get:

(Bt, Ct) = Υ(F1(Bt+1, Ct+1), Bt+1, Ct+1) (B.25)

Thus we obtain F which is a composite functin of Υ and F1.

Thus it suffices to find F1. Intuitively F1 is given by the information choice optimality condition,
by equating value of information to some transformation of the cost of collecting information,
potentially accounting for the boundary condition.

Note that the information choice optimality condition is given by (for interior λ):

π(λ) =
√
Xt

= exp(αχ)
(B.26)
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Sqare both sides, an interior λt is solved by equating:

Xt =
(Bt+1 + 1)2 σ2

θα
2
(
C2
t+1σ

2
x + σ2

ε

)
σ2
x

λ2
t (Bt+1 + 1)2 σ2

θ + α2
(
C2
t+1σ

2
x + σ2

ε

)2
σ2
x

+ 1 = e2αχ

Thus one can solve for λt, if it is at an interior.

λt =

√√√√(Bt+1 + 1)2 σ2
θα

2
(
C2
t+1σ

2
x + σ2

ε

)
σ2
x −

[
e2αχ − 1

]
α2
(
C2
t+1σ

2
x + σ2

ε

)2
σ2
x

(Bt+1 + 1)2 σ2
θ

One still need to account for boundary conditions:

λt = 1 if

√√√√(Bt+1 + 1)2 σ2
θα

2
(
C2
t+1σ

2
x + σ2

ε

)
σ2
x −

[
e2αχ − 1

]
α2
(
C2
t+1σ

2
x + σ2

ε

)2
σ2
x

(Bt+1 + 1)2 σ2
θ

> 1

λt = 0 if

√√√√(Bt+1 + 1)2 σ2
θα

2
(
C2
t+1σ

2
x + σ2

ε

)
σ2
x −

[
e2αχ − 1

]
α2
(
C2
t+1σ

2
x + σ2

ε

)2
σ2
x

(Bt+1 + 1)2 σ2
θ

< 0

(B.27)

Thus:

λt = F1 (Bt+1, Ct+1)

= max

(
min

(√
(Bt+1+1)2σ2

θα
2(C2

t+1σ
2
x+σ2

ε)σ2
x−[e2αχ−1]α2(C2

t+1σ
2
x+σ2

ε)
2
σ2
x

(Bt+1+1)2σ2
θ

, 1

)
, 0

)

This concludes the proof.

Proof of theorem 2

Auxilary Result: for σθ sufficiently small, π(λ) > 0,∀λ

Proof: Following the notation in the proof of lemma 4.3:

π (λ) =
WU

W I

=
√
X (λ,B,C)

= 1 +
α2
[
σ2
ε + C2σ2

x

]
σ2
x

λ2 (B + 1)2 σ2
θ + α2 [σ2

ε + C2σ2
x]2 σ2

x

(B + 1)2 σ2
θ

Subject to: [
B
C

]
−
[

1
Rλ (B + 1)L

1
Rα
[
C2σ2

x + σ2
ε

]
L

]
= 0

Thus

π′ (λ) =
1

2
X−

1
2 (Xλ +XBBλ +XCCλ)
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Define G (λ,B,C) = RB − λ (B + 1)L;H (λ,B,C) = RC − α
[
C2σ2

x + σ2
ε

]
L, Then the following

must hold:

G (λ,B,C) = 0

H (λ,B,C) = 0

Total differentiation: [
GB GC
HB HC

] [
Bλ
Cλ

]
= −

[
Gλ
Hλ

]
[
R− λL− λ (B + 1)LB −λ (B + 1)LC
−α

[
C2σ2

x + σ2
ε

]
LB R− 2αCσ2

xL− α
[
C2σx + σε

]
LC

] [
Bλ
Cλ

]
= −

[
− (B + 1)L− λ (B + 1)Lλ
−α

[
C2σ2

x + σ2
ε

]
Lλ

]
Bλ
Cλ

=

[
R− λL− λ (B + 1)LB −λ (B + 1)LC
−α

[
C2σ2

x + σ2
ε

]
LB R− 2αCσ2

xL− α
[
C2σx + σε

]
LC

]−1 [
(B + 1)L+ λ (B + 1)Lλ

α
[
C2σ2

x + σ2
ε

]
Lλ

]
Now we need to check the value of each term when σθ → 0.

X =
(B + 1)2 σ2

θα
2V Iσ2

x

λ2 (B + 1)2 σ2
θ + α2 (C2σ2

x + σ2
ε)

2 σ2
x

+ 1→ 1

∂X

∂B
=

(B + 1)2 σ2
θα

2V Iσ2
xα

2
(
C2σ2

x + σ2
ε

)2
σ2
x[

λ2 (B + 1)2 σ2
θ + α2 (C2σ2

x + σ2
ε)

2 σ2
x

]2 → 0

∂X

∂C
=

(B + 1)2 σ2
θα

2σ2
x

[
λ2 (B + 1)2 σ2

θ − α2
(
C2σ2

x + σ2
ε

)2
σ2
x

]
2Cσ2

x[
λ2 (B + 1)2 σ2

θ + α2 (C2σ2
x + σ2

ε)
2 σ2

x

]2 → 0

∂X

∂λ
=

− (B + 1)2 σ2
θα

2V Iσx2λ (B + 1)2 σ2
θ[

λ2 (B + 1)2 σ2
θ + α2 (C2σ2

x + σ2
ε)

2 σ2
x

]2 → 0

MU =
λ (B + 1)2 σ2

θ

λ2 (B + 1)2 σ2
θ + α2 (C2σ2

x + σ2
ε)

2 σ2
x

→ 0

∂MU

∂B
=

2λ (B + 1)σ2
θα

2
(
C2σ2

x + σ2
ε

)2
σx[

λ2 (B + 1)2 σ2
θ + α2 (C2σ2

x + σ2
ε)

2 σ2
x

]2 → 0

∂MU

∂C
= −

λ (B + 1)2 σ2
θ[

λ2 (B + 1)2 σ2
θ + α2 (C2σ2

x + σ2
ε)

2 σ2
x

]2 2α2
(
C2σ2

x + σ2
ε

)
σ2
x2Cσ2

x → 0

∂MU

∂λ
=

(B + 1)2 σ2
θ

[
λ2 (B + 1)2 σ2

θ + α2
(
C2σ2

x + σ2
ε

)2
σ2
x

]
− λ (B + 1)2 σ2

θ

[
2λ (B + 1)2 σ2

θ

]
[
λ2 (B + 1)2 σ2

θ + α2 (C2σ2
x + σ2

ε)
2 σ2

x

]2

→ 0
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Thus:

L =

[
X + (1− λ)MU

]
(λX + (1− λ))

→ 1

LB =

[
X + (1− λ)MU

]′
(λX + (1− λ))−

[
X + (1− λ)MU

]
(λX + (1− λ))′

(λX + (1− λ))2

=

[
XB + (1− λ)MU

B

]
(λX + (1− λ))−

[
X + (1− λ)MU

]
(λXB)

(λX + (1− λ))2 → 0

LC =

[
X + (1− λ)MU

]′
(λX + (1− λ))−

[
X + (1− λ)MU

]
(λX + (1− λ))′

(λX + (1− λ))2

=

[
XC + (1− λ)MU

C

]
(λX + (1− λ))−

[
X + (1− λ)MU

]
(λXC)

(λX + (1− λ))2 → 0

Lλ =

[
X + (1− λ)MU

]′
(λX + (1− λ))−

[
X + (1− λ)MU

]
(λX + (1− λ))′

(λX + (1− λ))2

=

[
Xλ −MU + (1− λ)MU

λ

]
(λX + (1− λ))−

[
X + (1− λ)MU

]
(X + λXλ − 1)

(λX + (1− λ))2

→ 0

Also, from

[
B
C

]
−
[

1
Rλ (B + 1)L

1
Rα
[
C2σ2

x + σ2
ε

]
L

]
= 0, one can show that as σθ → 0, the equations converge

to: [
B
C

]
−
[

1
Rλ (B + 1)

1
Rα
[
C2σ2

x + σ2
ε

] ] = 0

Thus:

B =
λ

R− λ

C =
R±
√
R2 − 4α2σxσε
2ασx

Thus under assumption 1, one can always solve for B,C as well as all other equilibrium objects.
Thus for any λ, an exogenous information linear steady state Φ(λ) always exists.
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Thus: [
Bλ
Cλ

]
→

[
R− λ 0

0 R− 2αCσ2
x

]−1 [
(B + 1)

0

]
=

1

(R− λ) (R− 2αCσx)

[
R− 2αCσx 0

0 R− λ

] [
(B + 1)

0

]
=

1

(R− λ) (R− 2αCσx)

[
(R− 2αCσx) (B + 1)

0

]
=

[
(B+1)
R−λ

0

]

=

[
R
0

]

lim
σθ→0

π′ (λ)

σ2
θ

= lim
σθ→0

1

2
X−

1
2

(Xλ +XBBλ +XCCλ)

σ2
θ

= lim
σθ→0

1

2

(Xλ +XBBλ +XCCλ)

σ2
θ

=
1

2

(B + 1)2 α4
(
C2σ2

x + σ2
ε

)3
σ4
x[

λ2 (B + 1)2 σ2
θ + α2 (C2σ2

x + σ2
ε)

2 σ2
x

]2R > 0

Because:

lim
σθ→0

Xλ

σ2
θ

= lim
σθ→0

− (B + 1)2 α2V Iσx2λ (B + 1)2 σ2
θ[

λ2 (B + 1)2 σ2
θ + α2 (C2σ2

x + σ2
ε)

2 σ2
x

]2 = 0;

lim
σθ→0

XC

σ2
θ

= −
(B + 1)2 α2σ2

xα
2
(
C2σ2

x + σ2
ε

)2
σ2
x2Cσ2

x[
λ2 (B + 1)2 σ2

θ + α2 (C2σ2
x + σ2

ε)
2 σ2

x

]2

is a finite number, hence

lim
σθ→0

XC

σ2
θ

Cλ = −
(B + 1)2 α2σ2

xα
2
(
C2σ2

x + σ2
ε

)2
σ2
x2Cσ2

x[
λ2 (B + 1)2 σ2

θ + α2 (C2σ2
x + σ2

ε)
2 σ2

x

]2 0 = 0.as lim
σθ→0

Cλ = 0

Thus for σθ sufficiently small but strictly positive, π′ (λ) > 0,∀λ

Claim 1

Claim 2 follows directly from the auxilary result and intermediate value theorem. Just pick any χ
such that eαχ ∈ (π(0), π(1)). Then there exist an λ2 such that π(λ2) = eαχ. λ2 is then a steady
state. It can be trivially verified that λ1 = 0 and λ3 = 1 are both steady states.
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Claim 2

We first show that the boundary steady states are both unstable. Consider the steady state with
λ = 0. Due to strict monotonicity of π (λ) and π (λ′) = eαχ for some λ′ > 0, π (0) < eαχ. Hence any
perturbation of (B,C) would still make π (0) < eαχ, thus the value of λ is unchanged and is equal
to 0.note that the (inverse) transition matrix is:[

Bt
Ct

]
=

[
1
Rλt (Bt+1 + 1)Lt

1
Rα
[
C2
t+1σ

2
x + σ2

ε

]
Lt

]

Hence the Jocobian matrix is:[
1
rλF + 1

r (Bt+1 + 1)λFB
1
r (Bt+1 + 1)λFC

1
rα
[
C2
t+1σ

2
x + σ2

ε

]
FB

1
rα
[
2Ct+1σ

2
x

]
F + 1

rα
[
C2
t+1σ

2
x + σ2

ε

]
FC

]

Which is equal to[
0 0

1
rα
[
C2
t+1σ

2
x + σ2

ε

]
FB

1
rα
[
2Ct+1σ

2
x

]
F + 1

rα
[
C2
t+1σ

2
x + σ2

ε

]
FC

]

when λ = 0.

Taking σθ → 0, the jocobian matrix is:[
0 0
0 1

rα
[
2Ct+1σ

2
x

] ]

Given C =
R−
√
R2−4α2σ2

xσ
2
ε

2ασ2
x

, the matrix becomes:[
0 0

0 1−
√

1− 4α2σ2
xσ

2
ε

R2

]

Thus locally the transition function becomes:[
Bt −Bss

Ct − Css
]

=

[
0 0

0 1−
√

1− 4α2σ2
xσ

2
ε

R2

] [
Bt+1 −Bss

Ct+1 − Css
]

Or: [
Bt −Bss

Ct − Css
]

=

 0(
1−

√
1− 4α2σ2

xσ
2
ε

R2

)
[Ct+1 − Css]


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Or

Ct − Css =

(
1−

√
1− 4α2σ2

xσ
2
ε

R2

)
[Ct+1 − Css]

[Ct+1 − Css] =
1(

1−
√

1− 4α2σ2
xσ

2
ε

R2

) [Ct − Css]

As 1(
1−
√

1− 4α2σ2xσ
2
ε

R2

) > 1, the system diverges, in the sense that any perturbation of C would drive

Ct away. Thus λ = 0 is not stable.

One can follow a similar step and show that the Jocobian matrix of the INVERSE transition
function evaluated at λ = 1, when σθ → 0, is:

1
R 0

0

(
1−

√
1− 4α2σ2

xσ
2
ε

R2

)

With eigenvalues 1
R and

(
1−

√
1− 4α2σ2

xσ
2
ε

R2

)
Thus the eigenvalues of the Jocobian matrix of the transition function is just the inverse of these
eigenvalues:

R > 1
1(

1−
√

1− 4α2σ2
xσ

2
ε

R2

) > 1

Thus λ = 1 is also unstable.

Claim 3

We next show that the interior steady state is saddle. At the interior steady state λt may vary
with perturbation to (Bt, Ct) .To ease exposition, let us denote the dynamic system in the following
way:

X (λt, St+1) = e2αc

St = Y (λt, St+1)

Where St = (Bt, Ct) is the state.

Y (λt, St+1) =

[
1
Rλt (Bt+1 + 1)Lt

1
Rα
[
C2
t+1σ

2
x + σ2

ε

]
Lt

]
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X (λt, St+1) = 1 +
α2
[
σ2
ε + C2

t+1σ
2
x

]
σ2
x

λ2
t (Bt+1 + 1)2 σ2

θ + α2
[
σ2
ε + C2

t+1σ
2
x

]2
σ2
x

(Bt+1 + 1)2 σ2
θ

The goal is to solve for the quadratic equation of

Q (u) =

∣∣∣∣ u− Y1B (λt (St+1) , St+1) −Y1C (λt (St+1) , St+1)
−Y2B (λt (St+1) , St+1) u− Y2C (λt (St+1) , St+1)

∣∣∣∣
Where Y1B (λt (St+1) , St+1) is the derivative of first argument of Y with respect toB.where λt (St+1)
is implicitly defined by X (λt, St+1) = e2αc.

The goal is to show that Q(1) < 0 so there is a route of the backward transition function that is
larger than 1. So that there is a route of the forward transition function that is smaller than 1 in
absolute value. This establishes claim 3. To show this, we need the following lemma

Lemma B.1

π′ (λ) =
Xλ

det [I − YS ]
Q (1)

Proof. Denote I the identity matrix. π (λ) is given by:

π (λ) = X (λ, S)

subject to
S = Y (λ, S)

Thus
π′ (λ) = Xλ +Xs [I − Ys]−1 Yλ

Note that S is double dimensional, we can write out each elements in the matrix:

Xλ = some scalar

XS =

[
π1

π2

]′
Yλ =

[
a
b

]
YS =

[
c d
e f

]
Use the above notation:

π′ (λ) = Xλ +Xs [I − Ys]−1 Yλ

= Xλ +
[
π1 π2

] [ 1− c −d
−e 1− f

]−1 [
a
b

]
Note that: [

1− c −d
−e 1− f

]−1

=
1

det [I − YS ]

[
1− f d
e 1− c

]
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Hence:

π′ (λ) = Xλ +
1

det [I − YS ]

[
π1 π2

] [ 1− f d
e 1− c

] [
a
b

]
=

Xλ

det [I − YS ]

[
det

[
1− f d
e 1− c

]
+

1

Xλ

[
π1 π2

] [ 1− f d
e 1− c

] [
a
b

]]
Now

Q (u) =

[
u− Y1B (λt (St+1) , St+1) −Y1C (λt (St+1) , St+1)
−Y2B (λt (St+1) , St+1) u− Y2C (λt (St+1) , St+1)

]
=

[
u 0
0 u

]
−
[
Y1B (λt (St+1) , St+1) Y1C (λt (St+1) , St+1)
Y2B (λt (St+1) , St+1) Y2C (λt (St+1) , St+1)

]
= uI − (Ys + Yλλs)

Where λs is implicitly defined by X (λt, St+1) = e2αc.Thus λs = −XS
Xλ
. Hence:

Q (1) = det

[
I − YS + Yλ

XS

Xλ

]
= det

[
I − YSXλ − YλXS

Xλ

]

= det

I −
[
c d
e f

]
Xλ −

[
a
b

] [
π1 π2

]
Xλ


= det

[
I −

[
c d
e f

]
+

1

Xλ

[
aπ1 aπ2

bπ1 bπ2

]]
= det

[
I −

[
c− 1

πλ
aπ1 d− 1

πλ
aπ2

e− 1
πλ
bπ1 f − 1

πλ
bπ2

]]
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det

[
I −

[
c− 1

πλ
aπ1 d− 1

πλ
aπ2

e− 1
πλ
bπ1 f − 1

πλ
bπ2

]]
= 1−

[
c− 1

πλ
aπ1 + f − 1

πλ
bπ2

]
+

[
c− 1

πλ
aπ1

] [
f − 1

πλ
bπ2

]
−
[
e− 1

πλ
bπ1

] [
d− 1

πλ
aπ2

]
= 1−

[
c− 1

πλ
aπ1 + f − 1

πλ
bπ2

]
+

[
c− 1

πλ
aπ1

] [
f − 1

πλ
bπ2

]
−
[
e− 1

πλ
bπ1

] [
d− 1

πλ
aπ2

]
= 1−

[
c− 1

πλ
aπ1 + f − 1

πλ
bπ2

]
+ cf − c 1

πλ
bπ2 − f

1

πλ
aπ1 − ed

+e
1

πλ
aπ2 + d

1

πλ
bπ1

= 1− f − c+ fc− de+
1

πλ
aπ1 +

1

πλ
bπ2

−c 1

πλ
bπ2 − f

1

πλ
aπ1 + e

1

πλ
aπ2 + d

1

πλ
bπ1

= det

[
1− f d
e 1− c

]
+

1

πλ
[a (π1 − fπ1 + eπ2) + b (π2 − cπ2 + dπ1)]

= det

[
1− f d
e 1− c

]
+

1

πλ

[
π1 π2

] [ 1− f d
e 1− c

] [
a
b

]
Hence:π′ (λ) = Xλ

det[I−YS ]Q (1)

Also, as σθ → 0,

[I − YS ]→
[

1− 1
Rλ 0

0 1− 1
Rα
[
2Cssσ2

x

] ]
Hence

det [I − YS ] =

[
1− 1

R
λ

] [
1− 1

R
α
[
2Cssσ2

x

]]
> 0

In view that π′ (λ) > 0,det [I − YS ] > 0, Xλ < 0 and the lemma, we get:

Q (1) < 0

Thus there is 1 eigenvalue larger than 1, denote it u∗. By property of the inverse Jacobian matrix,
there exists an eigenvalue that is the reciprocal of u∗ : 1

u∗ < 1. Hence there exists a stable manifold
φ (B,C) around the steady state such that if an equilibrium starts on that manifold, it will converge
to the steady state. Thus the middle steady state can be either stable or saddle-path stable.
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